

Azure Automation
Best Practices

Guide

Published by

Greg Charman
VP of Solutions & Services at Kelverion

Kelverion - Azure Automation Best Practices

 ©Kelverion UK Limited
 Version 1.6 Page 2 of 17
www.kelverion.com

Contents

1 INTRODUCTION .. 3

1.1 ABOUT KELVERION ... 3

2 AZURE AUTOMATION BEST PRACTICES .. 4

2.1 NAME RUNBOOKS WITH A STRUCTURE .. 4
2.1.1 Using Numbers within the “Descriptive Function” part of the runbook name 5
2.1.2 Meaningful names for runbooks and activities .. 5
2.1.3 Link Colours and link labels ... 5

2.2 HYBRID WORKER DEPLOYMENT ... 6
2.3 SOLUTION SEGREGATION VIA AUTOMATION ACCOUNTS .. 6
2.4 KEEP CONNECTION ASSET NAMES GENERIC .. 6
2.5 DON’T USE FILES FOR DATA REPOSITORIES .. 7
2.6 USE VARIABLE ASSETS SPARINGLY .. 7
2.7 CREATE COMMON TASK RUNBOOKS ... 7
2.8 CREATE A ROBUST ERROR REPORTING ROUTINE .. 8
2.9 FORWARD JOB LOGS TO OMS ... 10
2.10 ADD A BRANCH FOR "NOTHING TO PROCESS" ... 11
2.11 IMPLEMENT AUTOMATION WITH A RUNTIME DB ... 8
2.12 ALWAYS DEPLOY THE IM FOR SQL .. 8
2.13 ADD INITIALISATION PHASE TO EACH OF YOUR RUNBOOKS ... 12
2.14 DON’T USE POWERSHELL WORKFLOW .. 13
2.15 DEBUG TO THE PDS .. 10
2.16 PSPRIVATEMETADATA AND “FINDING YOURSELF” ... 13
2.17 SCHEDULING RUNBOOK EXECUTION ... 15
2.18 HEARTBEAT RUNBOOKS... 16

Kelverion - Azure Automation Best Practices

 ©Kelverion UK Limited
 Version 1.6 Page 3 of 17
www.kelverion.com

1 Introduction
1.1 About Kelverion

Kelverion specializes in Service Request Automation and offers organizations
automation solutions, integrations and supporting services.

Kelverion's solutions wrap around your existing ITSM tool and enable organizations
to harness the power of automation in the service management space, delivering a
400% return on investment over the first 12 months.

Kelverion has been involved with Microsoft's Azure Automation since its inception
and has a deep understanding of what is required to build efficient and effective
automation solutions using Azure Automation. These best practices incorporate
Kelverion's own experiences building Azure Solutions and feedback from customers
around their challenges.

For more information or a demonstration, please chat with a member of our team via
info@kelverion.com or visit: www.kelverion.com.

http://www.kelverion.com/

Kelverion - Azure Automation Best Practices

 ©Kelverion UK Limited
 Version 1.6 Page 4 of 17
www.kelverion.com

2 Azure Automation Best Practices
The following section contains several best practices that come from Kelverion's
experience with Azure Automation and the automations built using other tools. It's
important to recognize that these are recommendations rather than hard and fast
rules.

Each recommendation should be considered for use within a user's own automations,
and while you may find that some of the recommendations don't fit for development
or proof of concept runbooks, the Kelverion team have found that they have been of
great benefit in production solutions.

2.1 Name runbooks with a structure

Always use a structure for Runbooks names to simulate a folder structure within
Azure. As readers may be aware, there is no folder structure for runbooks within
Azure, however, by using a 3-part identifier for your runbooks, this can be simulated.
The recommended approach is

Project_Type_DescriptiveFunction

e.g. Alerting_Monitor_SCOM

 Alerting_Monitor_ServiceDesk

 Alerting_Update_Incident

 Alerting_Close_Event

WHY? This helps keep things simple. It Groups all the related runbooks together and
makes it easier to manage them.

Kelverion - Azure Automation Best Practices

 ©Kelverion UK Limited
 Version 1.6 Page 5 of 17
www.kelverion.com

Poor Naming Good Naming

2.2 Using numbers within the "Descriptive Function" part of the
runbook name

As in the pictures above, adding a numeric identifier to the third segment of the
runbook name helps define the expected order of execution and provide an
association between the Type segment.

i.e. all the 3xx runbooks above are related.

2.3 Meaningful names for runbooks and activities

Give all runbooks and the activities within meaningful names rather than using
defaults; this will save time when documenting and supporting your solution. Don't
forget that both runbooks and the activities they contain have description fields.

2.4 Link Colours and link labels

Using the Runbook Studio, users can colour code activities and links to make the flow
of execution, error handling and other vital features much easier to understand.
Combine colour with link labels and descriptive names, and the runbooks will almost
document themselves.

Kelverion - Azure Automation Best Practices

 ©Kelverion UK Limited
 Version 1.6 Page 6 of 17
www.kelverion.com

2.5 Hybrid Worker Deployment

Hybrid-worker groups should contain at least two machines for resilience. If the
hybrid-workers are not available, then runbooks that should be executed will go into a
suspended state.

Ideally, the deployment and configuration of your hybrid workers should be
automated. Cloud Hybrid workers can easily be deployed as a Hybrid Runbook
Worker role through the Azure virtual machine (VM) extension framework. The Azure
VM agent is responsible for management of the extension on Azure VMs on Windows
and Linux VMs.

This can also be done for on-premise Hybrid Workers, ensure these are Azure Arc
enabled servers using the Connected Machine agent.

2.6 Solution Segregation via Automation Accounts

Individual Automation Accounts are an excellent way to isolate unrelated solutions,
this could include placing the Automation Accounts into separate Resource Groups
for improved security separation.

This needs to be considered carefully at the planning stage, as it can introduce
additional overheads for managing the solutions. Many of those limitations can be
overcome using ARM templates for Automation Account deployment.

However, where hybrid-workers are currently used, they can only be assigned to a
single Automation Account. This means that the number of hybrid workers will grow
rapidly as the number of automation accounts increases.

2.7 Keep Connection Asset names generic

The properties of the connection asset hold all the specific information (User Name,
Password, Server Name). If the user includes the server name or the name of the
environment in the Asset name, then a user will need to modify it (and the runbooks
that utilize that information) when deployed to a different environment or change
servers.

Kelverion - Azure Automation Best Practices

 ©Kelverion UK Limited
 Version 1.6 Page 7 of 17
www.kelverion.com

For example: use the connection name 'ServiceNow' or 'SCOM' rather than 'SN-
Istanbul-dev' or 'SRV-SCOM-MS-01'.

2.8 Don't use files for data repositories

Using files to hold temporary data or logging information is not recommended
because once the runbook completes, the sandbox in which it was executed will be
disposed of and the files removed from the system. This makes it challenging to
troubleshoot.

Using a database to hold the temporary data or logging information makes it possible
to centralize information independently of where the runbook is executed or which
runbook is performing the task.

2.9 Use Variable assets sparingly

Variables are useful for pieces of information to be shared across multiple runbooks.
However, they don't serve the same purpose as true variables within the runbooks.
Although variables can be updated using 'Set-AzureRmAutomationVariable', it can be
challenging to manage multiple runbooks reading and writing the same set of
variables.

Instead, think of variables as a 'global constant' to be shared across an automation
account.

If data must be shared across multiple runbooks (or runbook executions), see 2.11.

2.10 Create Common task runbooks

Frequently, users reuse existing patterns within automation, such as logging in to an
Azure Account, checking if a type of resource exists, or something more exotic.

If users create common "task" runbooks to carry out those activities, then Azure
Automation makes it simple to call those tasks and execute them consistently.

Kelverion - Azure Automation Best Practices

 ©Kelverion UK Limited
 Version 1.6 Page 8 of 17
www.kelverion.com

Using the Kelverion Runbook Studio, users can drag and drop a task runbook into the
main flow. When calling a child runbook, the child executes in the same process as
the parent and executes synchronously, similar to calling a function within a script.

Alternatively, users can invoke a child runbook asynchronously using the 'Start-
AzureAzAutomation'activity in the parent runbook. This is like executing a PowerShell
Script block with 'start-job'.

2.11 Implement automation with a runtime Datebase

Many automation challenges can be made more manageable through careful
supervision of the runbooks and data they use to drive them.

Using a database to support the automation gives users an easy to use centralized
store for data that can be shared across runbooks and processes simultaneously as
being accessed concurrently by those runbooks.

This database is called the Persistent Data Store (PDS), and it enables many of our
best practices.

2.12 Always deploy the Integration Module for SQL Server

As noted above, the Persistent Data Store (PDS) is a crucial enabler for many
Kelverion best practices. To enable the easy deployment of a PDS as part of your
automation solution, Kelverion include the Integration Module for SQL Server free
with our authoring tool the Runbook Studio.

By deploying the Integration Module for SQL Server, users can exploit the power of
smart discovery within the Runbook Studio to accelerate the development of
runbooks. This allows the database interactions to happen without the need to write a
single line of SQL code.

2.13 Create a robust error reporting routine

Create a standard Event handling process; within each of the runbooks, write the error
to the PDS and allow the error handling runbook to forward the errors to Azure
Monitor, System Center Operations Manager, your Service Desk or any other alert
notification system you wish to use.

Kelverion - Azure Automation Best Practices

 ©Kelverion UK Limited
 Version 1.6 Page 9 of 17
www.kelverion.com

Within a runbook, the hash table $ActivityError contains the details for activities that
have raised errors. Within a users own code, either use 'Write-Error' to generate non-
terminating errors, or you can "Throw" an exception.

Kelverion - Azure Automation Best Practices

 ©Kelverion UK Limited
 Version 1.6 Page 10 of 17
www.kelverion.com

Note that users can turn fatal errors into non-fatal errors to be handled in a controlled
fashion within the runbook when you configure an activity.

2.14 Debug to the PDS

The job logs for runbooks are quite verbose and can be hard to understand, even for
relatively simple runbooks where all the actions are executed in-line. As the
complexity of the runbooks increases, or as soon as a child runbook is executed out-
of-band, users will benefit from writing debug information to an external store.

The PDS is the perfect location for that debug information. Consider setting a
variable within the initialization section of the runbook to turn the logging on and off
and then using a link condition before an 'Insert-SQLRows' Activity to log key pieces
of debug information.

2.15 Forward job logs to Azure Monitor

Forward your Azure Automation Job logs to Azure Monitor. The following article
shows exactly how to do that, and once this is done, users can configure alerts to
warn if issues are affecting the execution of their runbooks.

Forward Azure Automation diagnostic logs to Azure Monitor

https://docs.microsoft.com/en-us/azure/automation/automation-manage-send-joblogs-log-analytics

Kelverion - Azure Automation Best Practices

 ©Kelverion UK Limited
 Version 1.6 Page 11 of 17
www.kelverion.com

2.16 Add a branch for "nothing to process"

When troubleshooting runbooks via the logging in Azure, it can sometimes be
challenging if there is no output from an activity when using pipeline mode because
the runbook appears to stop executing (this is because there is no work to do.)

Using Sequence links and a junction activity, it's possible to add a generic handler to
the runbook if there is nothing to do.

The code activity "Handle No Output" contains the following

foreach ($o in $activityOutput.getEnumerator())
{
 if ($o.Value.Count -eq 0)
 {
 Write-Verbose $("No Output from '{0}'" -f $o.key)

$o
 }
 else
 {
 Write-Verbose $("Output from '{0}' = {1}" -f $o.key,$o.Value)
 }
}

Sequence links with the condition
“$_.Count -eq 0” so they are followed if
there is no output from the “worker”

Kelverion - Azure Automation Best Practices

 ©Kelverion UK Limited
 Version 1.6 Page 12 of 17
www.kelverion.com

2.17 Add Initialization Phase to each of your runbooks

Create a linear section at the start of each runbook to initialize essential data to be
used within the rest of the runbook. This initialization phase should use sequence
links to hook its activities up (to ensure that each one runs once (and only once.))

Use consistent colour coding through all runbooks for the initialization phase so that
other users looking at the runbook realize that it's not part of the "main" flow of the
runbook.

Notice the
“Sequence”
Links

Kelverion - Azure Automation Best Practices

 ©Kelverion UK Limited
 Version 1.6 Page 13 of 17
www.kelverion.com

2.18 Don't use PowerShell Workflow

Initially, Azure Automation only supported PowerShell workflow. Users may find
some documentation on the internet or examples of runbooks that use workflow.
PowerShell workflow has some interesting features and capabilities; however, it also
introduces some new challenges. If the user is already aware of the features and
wants them, they are probably ready to deal with the challenges. If not, Kelverion
recommends that users just focus on the power of ordinary PowerShell.

2.19 PSPrivateMetadata and "Finding yourself"

For every runbook executing, the PowerShell host creates an object holding some
valuable information '$PSPrivateMetadata'.

Within the properties of this object, the JobID can be found for the currently executing
runbook '$PSPrivateMetadata.JobId.Guid'

When recording any information to the PDS about a running runbook, it's valuable to
record the JobID as this allows users to retrieve job logs for the runbook.

Within a runbook, users can even use the JobID to find information about the current
runbook, e.g. Automation Account Name, Runbook Name.

The following PowerShell Code does precisely that. Please remember that there is no
direct method to get the runbook name, so the code below iterates through all the
automation accounts for the current subscription. While this is not a particularly
resource-intensive operation, this shouldn't be done more than once for a runbook
execution (as the data will not have changed.)

This is a perfect example to become a "common task runbook", and its execution
probably should be added at the start of the runbook during the "initialization phase"
see 2.17

Kelverion - Azure Automation Best Practices

 ©Kelverion UK Limited
 Version 1.6 Page 14 of 17
www.kelverion.com

Note: if creating a task runbook containing this code, users will only receieve
information about the "parent" runbook if the child is executed "in-line" if the child is
executed "out-of-band" with (Start-AzureRmAutomationRunbook), then the information
returned will be for the child runbook alone.

$Conn = Get-AutomationConnection -Name "AzureRunAsConnection"
$JobId = $PSPrivateMetadata.JobId.Guid

$Add_Acct_parms = @{
 ServicePrincipal = $True;
 TenantId = $Conn.TenantId;
 ApplicationId = $Conn.ApplicationId;
 CertificateThumbprint = $Conn.CertificateThumbprint
}

Add-AzureRmAccount @Add_Acct_parms | out-null
in there are multiple subs
Select-AzureRmSubscription -SubscriptionId $Conn.SubscriptionID | out-null

foreach ($Res in @(Find-AzureRmResource -ResourceType
Microsoft.Automation/AutomationAccounts))
{
 write-verbose $("checking ({0}:{1}) for JobID:{2}" -f
$Res.ResourceGroupName, $Res.Name, $JobID)
 $Job = Get-AzureRmAutomationJob -ResourceGroupName
$Res.ResourceGroupName -AutomationAccountName $Res.Name -Id $JobID -
ErrorAction SilentlyContinue
 if (!([string]::IsNullOrEmpty($Job)))
 {
 New-Object PSObject -Property @{
 "Location" = $res.Location;
 "ResourceGroupName" = $res.ResourceGroupName;
 "AutomationAccountName" = $job.AutomationAccountName;
 "RunbookName" = $job.RunbookName
 }
 break;
 }
}

Kelverion - Azure Automation Best Practices

 ©Kelverion UK Limited
 Version 1.6 Page 15 of 17
www.kelverion.com

2.20 Scheduling Runbook Execution

There are several options available for the scheduled execution of runbooks. There
are pros and cons to each option.

1) Runbook Schedules – Runbook schedules can easily be configured in each
Automation Account and assigned to one or more runbooks. This is a
straightforward approach to scheduling runbook execution.

Pros

• No additional cost

• Simple

Cons
• Limited granularity (1hour)
• Lack of flexibility

2) Webhooks and Logic Apps – Runbooks can easily have webhooks
configured to start the runbook when an HTTP Post is received. Azure has a
comprehensive scheduling capability called Logic Apps that can trigger
these webhooks.

Pros
• Simple
• Flexible
• Down to 1 second scheduling
• Easily manage multiple Automation Accounts
• There are additional triggers in Logic Apps like database, so can be used

with the PDS to only trigger Azure Automation when there is rows in the
database to process.

Cons
• Only time based
• The is a cost associated with Logic Apps use

Kelverion - Azure Automation Best Practices

 ©Kelverion UK Limited
 Version 1.6 Page 16 of 17
www.kelverion.com

3) Dispatcher runbook and external configuration store – A custom dispatcher
runbook is driven by data within the PDS and can give a considerable level of
control over the scheduled execution of runbooks within one or many
Automation Accounts. The time element and decision elements can be as
simple or complex as required.

Pros
• Powerful
• Flexible

Cons
• Complex (but can use graphical runbooks)
• Requires automation minutes for execution
• It depends on one of the other solutions to trigger the Dispatcher

4) Webhooks and Event Grid – Although this is not truly a scheduling approach,

it is possible to configure the Azure Event Grid to trigger a runbook via a
webhook based on a publish and subscribe model. For example, when a
virtual machine is deployed to a subscription, an event is posted to the event
grid. An appropriate subscription can then trigger a runbook to perform
some actions against that virtual machine

Pros
• No additional cost
• Simple
• No "polling" for work to do

Cons
• Not a scheduling solution as such
• Recurring actions are still dependant on publishing a "trigger event"

2.21 Heartbeat Runbooks

If utilizing the power of Azure Monitor, then consider using the alerting to build
a "heartbeat" mechanism that will provide out-of-band alerting for any or all
the following

• Hybrid Worker Groups
• Scheduling facilities

Kelverion - Azure Automation Best Practices

 ©Kelverion UK Limited
 Version 1.6 Page 17 of 17
www.kelverion.com

Create a runbook that sends an event to Azure Monitor periodically (e.g. every
15 minutes) and then configure an alert if there are less than three alerts in
any one hour period.

