
How Automation Closes the

PATCHING GAP

PUBLISHED BY
GREG CHARMAN

KELVERION VP OF SOLUTIONS & SERVICES

How Automation Closes the Patching Gap 2

Contents

INTRODUCTION.. 3

TROUBLE WITH REBOOTS, PART 1: EVERY SERVER AT THE SAME TIME........................ 4

TROUBLE WITH REBOOTS, PART 2: NEW SERVERS RANDOMLY REBOOTING 6

IN CONCLUSION...13

How Automation Closes the Patching Gap 3

INTRODUCTION

Monthly patch deployments of software and security updates can be a costly,
time consuming, and unreliable process, leaving companies with huge security
and compliance issues. Many tasks are repeated monthly and it is up to the SCCM
Administrator to ensure that devices are patched correctly and working. When the
Admin is looking after a large estate or multiple customers, the patching process often
becomes an unwieldy full-time job fraught with failure gaps.

This White Paper will first focus on locating those gaps and then offer the automation
solution that can tighten the process.

How Automation Closes the Patching Gap 4

TROUBLE WITH REBOOTS, PART 1:
EVERY SERVER AT THE SAME TIME

In isolation, a device reboot is fine, but when the machine is a server supporting a
production service, it is essential that its reboot be considered as part of the wider
service estate.

For example, if a service has a Web front-end made up of three IIS Web servers, and all
three reboot at the same time, the Web front-end would go offline and the service would
be unavailable. It is therefore essential not to deploy patches to all three machines at
the same time.

REDUNDANCY AND STAGGERING REBOOTS

The importance of redundancy
is without question, particularly
for high availability solutions like
online front-ends, database servers,
and communication platforms.
However, for redundancy to work,
each system involved must be
able to take on the functions of the
other, which also means that the
patching process for each is likely
to be similar or even identical.

As patching may require reboots
or other cases of downtime, it is
essential that individual patching
processes are staggered to avoid a
loss of service level.

In a complex application with multiple layers – presentation layer (top), processing
layer (middle), database layer (back-end) – it is often the case that each layer is entirely
dependent on the tier below it for correct operation. This interdependence is often
unable to handle even a temporary loss of a lower level during a reboot. Therefore,
each tier must be patched at a different time, starting with the back-end first, followed
by the middle, and finally the top layer. Patching and rebooting each layer in this order
results in the application returning to full functionality.

How Automation Closes the Patching Gap 5

DEVICE COLLECTIONS AND MANUAL PATCHING

IT departments often opt to create a number of Device Collections in SCCM and
patch the machines in each collection at different times. Yet it is nearly impossible for
the Admin to know – for every case – which devices should be in a particular patch
schedule. The Application Developers and Infrastructure Support teams are those who
best understand the applications and their optimum patching cycles. However, they
are rarely familiar with patching schedules and can only define which devices go into
a schedule through lengthy communication with the SCCM Admin on an application-
by-application basis.

Further, some essential devices must be manually patched, yet there is no guarantee
that those manual tasks are actually getting done every month. It is all too easy to lose
track of which boxes are being manually patched, which manually rebooted, and who
owns those deployments and reboots.

How Automation Closes the Patching Gap 6

TROUBLE WITH REBOOTS, PART 2:
NEW SERVERS RANDOMLY REBOOTING

As new patches are released each month, the SCCM Admin assesses those patches
and creates a series of Software Update Groups that bundle together sets of patches.

The contents of each Software Update Group will vary depending on the patching
policy of a customer. Some examples of possible patching policies include:

Group by
operating

system
(e.g. Windows
Server 2008)

Group by
application
(e.g. Office

2013)

Group by patch
deployment

month
(e.g. Jan 2016)

Group by
classification
(e.g. Critical

only)

Or most likely, a combination of more than one of the above.

How Automation Closes the Patching Gap 7

When a new server is introduced, it is added to an existing Device Collection in SCCM.
The SCCM Agent on the server will periodically check policy to see if there is anything to
do, this includes Active Software Update Deployments (patches). As soon as the Agent
detects a Software Update Group, it will start comparing the contents to its deployed
patches to determine if there are any missing patches.

Each Software Update Group will have a defined patch deployment date; this may be
a date in the future, in which case the Agent notes the patch and does nothing until the
deployment date. However, when the Agent detects a patch from an older Software
Update Group is missing, it will immediately begin installing the patch and then reboot
the new server. This will keep happening until all missing patches have been processed.

From a Service Management point of view it appears that a new server has been added
to the estate, which then starts randomly rebooting. This same process of detection,
installation and rebooting can also occur when a server is moved from one SCCM
Device Collection to another.

MAINTENANCE WINDOWS

SCCM provides a feature that is intended to control and prevent random reboots
from happening called Maintenance Window. This feature is available on each Device
Collection, and it allows the Admin to set a period of time during which devices within
the collection may install applications (via task sequences) and software updates.

Therefore, when creating a short Maintenance Window, the SCCM Admin needs to
edit individual software updates to reduce their default maximum runtime. On the
other hand, a larger Maintenance Window that allows more patch variance can lead to
random rebooting at unexpected times.

Another major issue faced by SCCM Admins is finding out which Device Collections
have Maintenance Windows, as there is no default view or setting to display this in the

How Automation Closes the Patching Gap 8

SCCM console. This can prove problematic as a device can be a member of more than
one collection, and could easily have more than one Maintenance Window associated
with it. This device would behave differently than one in just a single collection, and is
more difficult to troubleshoot when a patch will deploy.

With all these considerations, using Maintenance Windows to control unnecessary
reboots on servers requires a considerable amount of planning and administrative
effort.

THE ONEROUS TASK OF PATCHING

1. Download
the required
updates in

SCCM

2. Test the
updates on
some test
devices

3. Define and
agree with the
device owners

a Schedule
for deploying
the patches to

devices.

4. Create
Maintenance
Windows so

patches deploy
at the correct

time

5. Raise a
Change

Request to
deploy the

patches to the
corresponding

Schedules

6. Check the
Deployment

Collection
contains

the correct
devices for the

deployment

7. Create a
Deployment

Job per
Schedule
against

each Device
Collection

A typical set of patching process
steps would be as follows:

It is a massive piece of work configuring all these steps, and it is the SCCM Admin who
must ensure that devices are patched correctly and working.

MANAGING ERRORS

After requesting that SCCM deploy some patches, it is crucial to confirm which
deployments were successful. Admins must typically rely on Patch Deployment
Views and Reports in SCCM to determine which updates have failed. These are not
instantaneous updates and are intended to confirm compliance rather than ascertain

How Automation Closes the Patching Gap 9

which devices have failed patch deployment. While SCCM has a built-in logic for this,
it can be time consuming to go through logs to find errors and, when found, re-do the
patching.

One option is for SCCM to send an error message to System Center Operations
Manager (SCOM), a monitoring tool, which then dispatches an alert to the Admin. This
function is not enabled by default, however, so it would need to be set up manually.

CLOSING THE GAPS WITH AUTOMATED PATCHING SOLUTION
Using Orchestrator with Kelverion’s Automated Patching Solution distills the hands-on
administration of the patching process to these three simple steps:

1.	 Download the required updates in SCCM

2.	 Test the updates on some test devices

3.	 Raise a Change Request via the Service Desk portal to deploy the patches

Once a Change Request is approved, the Solution calculates the best date for each
schedule and automatically creates deployment jobs for each Device Collection in
SCCM. Rather than using Maintenance Windows, Orchestrator is used to control when
patches become active and also to de-activate them after a defined period. This patch
availability control by Orchestrator prevents new servers from detecting and deploying
older patches outside of agreed patch windows.

The Weekly System Center 2012 R2 Updates have been downloaded, ready to deploy.

This also allows a server to be moved between SCCM patching Device Collections at
any time during the month without risk that it will install missing patches before the
next agreed patch change window.

Linking deployment to a Change Request allows greater control of when the SCCM
patch deployments are enabled, thus preventing unnecessary reboots of critical
systems outside of an approved change control window.

How Automation Closes the Patching Gap 10

FREEING THE ADMIN

With this simplified and automated Solution, the patching process can be turned over to
Device Owners (SQL team, Server Support, Application Developers, etc.) to define and
control. This puts things in the hands of those who best know their systems’ patching
needs and when their devices would be available for updating, therefore increasing
service availability.

Select Automated Patching from the Service Offerings in the Self Service portal.

Select Automated Patching from the Service Offerings in the Self Service portal.

How Automation Closes the Patching Gap 11

Select Automated Patching from the Service Offerings in the Self Service portal.

The Patch Schedule selection is controlled via an automated service request from the
Service Desk portal. The use of the Patch Schedule selection also makes it easy to see
which machines should have been manually patched or manually rebooted, and then
the compliance of those devices can be checked.

The Solution enables SCCM to raise patch deployment failures as SCOM Alerts, so it is
immediately obvious which devices require patch remediation.

REMAINING COMPLIANT

By leveraging the test machines as patch masters, it becomes easy to use the Desired
State Configuration functionality in SCCM to determine which devices in an estate are
not compliant, and then SCCM can again raise SCOM Alerts to flag the machine to be
resolved.

ERRORS HANDLED

Should a patch failure be detected by SCCM, the Solution will automatically create
a SCOM Alert. And when combined with Kelverion’s Operations Manager 2012
Connectors solution, the SCOM alert will automatically create an Incident Ticket in the
Service Desk.

Kelversion automated Patching Solution v1.0 – Process Overview

Planning\Test Phase CAM
Deployment

Enabled
Deployment

Start
Deployment

Disabled

C
hn

ag
e

C
o

nt
ro

l
Se

cu
ri

ty

O
ffi

ce
r

SC
C

M
 A

d
m

in
is

tr
at

o
r

D
ev

ic
e

O
w

ne
r(

s)
A

ut
o

m
at

io
n

Notify of Security
Updates / Patches

Create Required
Software Update

Group(s)

Deploy content
to Distribution

Points

Test Patches on
Test devices

SR: Chnage Device(s)
Allocated ‘Patching

Schedule’

Raise CR
via Portal to

Deplaoy Patches
Check reporting

\ Compliance

Check patch
deployments

Patch
Agreement

Meeting

(Daily) Update
software Update

Group(s) in
SCSM

SR:
Automate
change AD
group for
device(s)

Create CR
for Patch

Deployment

Create Patch
Deployments

in SCCM

Updates
Download to
devices. Old

Deployments
Re-enabled

Neww
deployments

install patches \
device reboot if

allowed

All patch
deployments
are disabled

Weekly
Change
Advisory

Board

Close
Change
Request

Ch
an

ge
 A

pp
rv

oe
d

in
 C

AB

How Automation Closes the Patching Gap 12

How Automation Closes the Patching Gap 13

IN CONCLUSION

Patch deployments are essential for the ongoing health of any enterprise estate, but
the process can prove disruptive and costly, in both capital and resources, and riddled
with procedural gaps. Kelverion’s Automated Patching Solution offers a reliable,
managed approach to patch and security compliance with extensibility to add as
many deployment schedules as business needs dictate, while reducing the need for
Maintenance Windows and the dedicated attention of the SCCM Admin.

