

RUNBOOK STUDIO
For Microsoft Azure Automation

User Guide
Version 5.6.1

http://azure.com/certified

USER GUIDE 2

Kelverion Runbook Studio

Kelverion Runbook Studio
Copyright 2016 Kelverion Inc. All rights reserved.

Kelverion Runbook Studio is Microsoft Azure Certified

Published: November 2023

Feedback

Send suggestions and comments about this document to support@kelverion.com

USER GUIDE 3

Kelverion Runbook Studio

Contents
Notices .. 5

Installation and Setup .. 6
System Requirements.. 6
Installing Runbook Studio .. 6
Runbook Studio License .. 7
Connecting to Microsoft Azure Automation ... 8

Introduction to Runbook Studio ... 11
Runbook Canvas .. 11

Activity Status .. 11
Link Status .. 12
Zoom Control ... 13
Drag and Drop Interaction Modes ... 13

Explorer Panel.. 15
The Toolbox Group ... 15
The Azure Group .. 15

Properties Panel .. 19
Connecting to Microsoft Azure ... 20

Working with Graphical Runbooks ... 21
Runbook Files ... 21
Runbook Input and Output .. 23
Error Handling .. 23
Logging and Tracing .. 24

Testing Runbooks .. 25
Working with Activities ... 25

Disabling Runbook Activities .. 26
Retry Behavior .. 26
Additional Parameters .. 28

Working with Activity Links ... 28
The Databus ... 29
Link Conditions ... 29
Error Links .. 30
Cycles ... 30

Working with Global Assets... 30
Publishing Runbooks to Azure ... 31
Activity Types... 32

Command Activity .. 33
Invoke Runbook Activity ... 35

USER GUIDE 4

Kelverion Runbook Studio

Code Activity .. 35
Junction Activity ... 35
Smart Activity ... 36

Generating PowerShell .. 38

Working with Version Control .. 40
Getting Started with Version Control .. 40

Profiles ... 40
Connecting to Git Hosting Services .. 41

Working with Repositories .. 43
Initializing a Repository .. 43
Cloning a Repository .. 44

Recording Changes to a Git Repository ... 45
Some Git Basics .. 45
Committing Changes in Runbook Studio .. 45
Undoing Things .. 46

Working with Remotes .. 46
Fetching and Pulling Changes from a Remote ... 47
Pushing Changes to a Remote ... 48

Working with Branches ... 49
Creating, Renaming and Deleting Branches .. 49
Checking out a Branch ... 50
Merging .. 51
Resolving Conflicts ... 52

Working with Tags ... 53
Creating Tags ... 53
Sharing Tags... 54
Deleting Tags ... 54

Working with Stashes .. 54
Stashing Your Work.. 54
Applying Your Stashed Changes ... 55

Let us Know How We are Doing? ... 56

USER GUIDE 5

Kelverion Runbook Studio

Notices
End of Support Notice for Azure Automation Agent-based Hybrid Workers

Microsoft is ending support for Azure Automation Agent-based Hybrid Workers (Windows and Linux)
on August 31, 2024. You must complete migrating existing Agent-based Hybrid Workers to
Extension-based Hybrid Workers before August 31, 2024. Moreover, starting October 1, 2023, you
will no longer be able to create new Agent-based Hybrid Workers.

Runbook Studio 5.5 introduces support for Extension-based Hybrid Workers. You must upgrade if
you are currently using Extension-based Hybrid Workers or planning to start your Agent-based
Hybrid Worker migration. Runbook Studio 5.5 will continue support for Agent-based Hybrid Workers,
but we cannot guarantee support will continue to August 31, 2024.

For more information see Migrate existing agent-based hybrid workers to extension-based hybrid
workers.

End of Support Notice for Azure Active Directory Authentication Library (ADAL)

Microsoft is ending support for Azure Active Directory Authentication Library (ADAL) in June 2023.
Runbook Studio 5.4 and all previous versions are dependent on ADAL to authenticate with Azure
Automation. Kelverion has added support for Microsoft Authentication Library (MSAL) in Runbook
Studio 5.5. We strongly recommend upgrading to Runbook Studio 5.5+ to ensure that Runbook
Studio uses security fixes beyond June 2023.

Starting with Runbook Studio 5.5 you must register Runbook Studio in the Azure portal (in previous
versions, this was optional). If you have already registered Runbook Studio in the Azure portal, you
must update the redirect URI and add permissions to access the Azure Service Management, Azure
Automation and Microsoft Graph web APIs.

For more information on creating and App Registration for Runbook Studio or upgrading your
existing Connecting to Microsoft Azure Automation.

Federated Subscriptions Update
We resolved an issue where subscriptions that are managed by multiple tenants were not being
displayed in the resource panel. Important: If you are updating from a previous version or Runbook
Studio, the first time you start Runbook Studio 5.6 after upgrading you will not see any resources in
the left resource panel. To resolve this issue, just Sign-In to Azure normally from Runbook Studio.

https://learn.microsoft.com/en-us/azure/automation/migrate-existing-agent-based-hybrid-worker-to-extension-based-workers
https://learn.microsoft.com/en-us/azure/automation/migrate-existing-agent-based-hybrid-worker-to-extension-based-workers

USER GUIDE 6

Kelverion Runbook Studio

Installation and Setup

System Requirements
The Kelverion Runbook Studio has the following system requirements:

• Windows 11, Windows 10, Windows Server 2022, or Windows Server 2019

• Microsoft .NET Framework 4.8

• Azure Subscription containing one or more Automation accounts.

o Supported Access Control Roles: Owner and Contributor

• 2 GB of disk space

• 4 GB RAM

Important: These system requirements are based on a stand-alone deployment of Runbook Studio
for a single user. If you intend to deploy Runbook Studio to a server, so that multiple users can access
it concurrently, you should scale your system accordingly.

Installing Runbook Studio
Once you have determined that your computer satisfies the installation requirements, you can
follow these steps to install the Kelverion Runbook Studio on your computer.

1. Launch the Kelverion Runbook Studio installer (Kelverion.RunbookStudio.msi). The Kelverion
Runbook Studio Setup Wizard appears.

2. Click Next.

3. On the End-User License Agreement page, read the Kelverion License Terms, select I accept
the terms in the License Agreement and then click Next.

4. Click Next to install Runbook Studio to the default folder.

5. Click Install.

6. Click Yes to allow the files to be installed.

7. Click Finish to exit the installer.

USER GUIDE 7

Kelverion Runbook Studio

Runbook Studio License
When you launch Runbook Studio, you will be asked to provide a valid license file if one has not been
provided already.

To add a new license click Apply License and select the license file (*.kasl) that you want to use, click
Open and then click OK. If the license that you provide is valid, Runbook Studio will continue;
otherwise, it will close.

If you need to request a new Runbook Studio license, click the Server License or Client License
button, and then complete the License Configuration Form that opens in your web browser.

If you need to manage your license file(s) later, Runbook Studio stores license files at the following
location: C:\Users\<User>\AppData\Local\Kelverion\Runbook Studio\Licenses.

Starter License
Runbook Studio Starter licenses let you build runbooks for Azure while utilizing advanced features
such as smart activities, favorites, drag and drop, color coding and more. There are however some
limitations:

• Version control and collaboration features are disabled.

• You can only upload a maximum of twenty-five runbooks to an automation account.

For mor information on our Professional and Client licenses, please contact sales@kelverion.com for
more information.

mailto:sales@kelverion.com

USER GUIDE 8

Kelverion Runbook Studio

Connecting to Microsoft Azure Automation
Before you can connect Runbook Studio to Azure Automation, you need to create one or more app
registrations in Azure Active Directory App registrations.

Prerequisites:

• An Azure account that has an active subscription. Create an account for free.

• The Azure account must have permission to manage applications in Azure Active Directory
(Azure AD). Any of the following Azure AD roles include the required permissions:

o Application administrator

o Application developer

o Cloud application administrator

• Completion of the Set up a tenant QuickStart.

Register Runbook Studio with Azure Active Directory:

1. Sign in to the Azure portal.

2. If you have access to multiple tenants, use the Directories + subscriptions filter in the top
menu to switch to the tenant in which you want to register the application.

3. Search for and select Azure Active Directory.

4. Copy the Directory (Tenant ID) to Notepad. You will use the value when setting up your
tenant in Runbook Studio.

5. Under Manage, select App registrations > New registration.

6. Enter a display Name, such as Kelverion Runbook Studio.

7. Specify who can use the application, sometimes called its sign-in audience. You will typically
select Accounts in this organizational directory only.

8. Do not enter anything for Redirect URI (optional). You will configure a redirect URI in the
next section.

9. Select Register to complete the initial app registration.

10. Select Overview.

11. Copy the Application (client) ID to Notepad. You will use the value when setting up your
tenant in Runbook Studio.

Configure Redirect URIs:

12. Under Manage, select Authentication > Add a platform.

13. Select Mobile and desktop applications.

https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://learn.microsoft.com/en-us/azure/active-directory/roles/permissions-reference#application-administrator
https://learn.microsoft.com/en-us/azure/active-directory/roles/permissions-reference#application-developer
https://learn.microsoft.com/en-us/azure/active-directory/roles/permissions-reference#cloud-application-administrator
https://learn.microsoft.com/en-us/azure/active-directory/develop/quickstart-create-new-tenant
https://portal.azure.com/

USER GUIDE 9

Kelverion Runbook Studio

14. Select the appropriate redirect URIs. This will typically be
https://login.microsoftonline.com/common/oauth2/nativeclient.

15. Copy the redirect URL to Notepad. You will use the value when setting up your tenant in
Runbook Studio.

16. Click Configure.

Configure Application Permissions:

17. Under Manage, select API permissions.

18. Select Add a permission > Microsoft Graph

a. Select Delegated permissions.

b. Under Permissions, check User > User.Read.

c. Click Add Permissions.

19. Select Add a permission > Azure Service Management

a. Select Delegated permissions.

b. Under Permission select user_impersonation.

c. Click Add Permissions.

https://login.microsoftonline.com/common/oauth2/nativeclient

USER GUIDE 10

Kelverion Runbook Studio

Create a new tenant registration in Runbook Studio:

1. Start Runbook Studio.

2. Click the File tab.

3. Click Azure AD.

4. Click Manage Tenants.

5. Click Add a Tenant.

6. In the Name field, enter a name to describe the tenant.

7. In the Directory (tenant) ID field, paste the directory ID that you copied to Notepad.

8. In the Application (client) ID field, paste the application ID that you copied to Notepad.

9. In the Redirect URI field, paste the URL that you copied to Notepad.

10. Click OK.

11. Click OK.

12. In the Active Tenant field, select the tenant that you just created.

Note: Smart Connections, which are used to facilitate resource discovery when building runbooks,
are associated with a specific Runbook Studio tenant. For multi-tenant deployments, when you
switch the active tenant, you will only have access to the Smart Connections in that tenant.

1. OOVER

USER GUIDE 11

Kelverion Runbook Studio

Introduction to Runbook Studio
Runbook Studio is an on-premises Windows application that provides users with an interactive
environment for authoring automation runbooks and for managing content in Azure Automation.

The Runbook Studio is organized into four principal areas, the Ribbon Bar (top), the Resources Panel
(left), Runbook Canvas (center) and Properties Panel (right).

Runbook Canvas
The Runbook Canvas is where you design and build your runbooks. You can open as many runbooks
as you need and quickly switch between them by clicking the appropriate tab at the top of the
canvas. File operations, such as Save, and Upload are applied to the runbook that is currently being
displayed on the canvas.

You add activities from the nodes in the Resources panel and then connect them with links to define
the logic of a runbook. When you click on an activity or link on the canvas the properties used to
configure the selected runbook element are displayed in the Properties panel. If you click on an
empty area of the canvas, the properties used to configure the runbook are displayed in the
Properties panel.

When you click on an activity node in the canvas and hold the mouse button down, you can drag the
activity, or group of activities, to a new position on the canvas. The position of an activity on the
canvas does not have any effect on its behavior, although it can help to understand its function
within the runbook.

When you update a runbook, the name displayed in the tab at the top of the canvas will be
appended with an asterisk (*) to indicate that you need to save your work. To help ensure that you
do not lose any unsaved work, Runbook Studio will prompt you to save your work when you try to
close a runbook that has been changed.

Activity Status
To assist with runbook authoring, Runbook Studio provides visual feedback on the status and
configuration of the activities in the runbook.

An icon is displayed in the top left corner of every activity that indicates whether the activity has
been correctly configured. A green arrow indicates that the activity is valid, and a red X indicates that
it is invalid. You can hover the mouse over the red X icon to view the problems that need to be
corrected.

Invalid Activity Valid Activity

USER GUIDE 12

Kelverion Runbook Studio

Additional status icons may be displayed in the top left corner of an activity, depending on how it has
been configured. The following table describes what the status icons mean.

 Indicates that the activity converts exceptions to errors.

Indicates that the checkpoint has been set up after the activity runs. Checkpoints
are only available in graphical PowerShell Workflow runbooks.

 Indicates that the activity will repeat until a specified exit condition has been met

Indicates that the activity is a Smart Activity, with support for dynamic discovery

Link Status
The runbook canvas also provides visual feedback on the types of links that connect the activities in
your runbook. Valid links are blue and invalid links are red. When you hover the cursor over an
invalid link, Runbook Studio will display a tool tip to help you identify and resolve the problem.

Runbook Studio supports pipeline and sequence links, which are discussed in detail in the Activity
Links section of this guide, and they are displayed differently on the runbook canvas. Sequence links
start with an Open Circle end with an Open Arrow, whereas Pipeline links start with a Filled Circle and
end with a Filled Arrow.

Pipeline Link Sequence Link

Links can also have conditions applied to them and these are displayed differently as well. Links
without a condition are drawn with a solid line and links that have a condition are drawn with a
dashed line.

You can also create special links for handling errors. Error links are only followed if the source activity
emits an error and will not be followed if the activity emits only normal output. Error links are drawn
with a dotted line.

USER GUIDE 13

Kelverion Runbook Studio

Conditional Link Error Link

Zoom Control
When working with the runbook canvas, you can zoom in to get a close-up view of the activities in
your runbook or zoom out to see more of the runbook.

Zoom into a runbook.
In the Home tab, click Zoom In.

Zoom out of a runbook.
In the Home tab, click Zoom Out.

Alternatively, in the Runbook status bar use the Zoom slider.

You can also click Scale to Fit in the Home tab or status bar to automatically set the zoom level so
that the entire runbook is visible.

Drag and Drop Interaction Modes
The Runbook Canvas has two interaction modes, called Pan, and Select and you can switch between
them by clicking either the Hand or Pointer button on the toolbar.

When Pan is enabled, the cursor changes to a hand . When you click and hold the mouse button
in pan mode you can reposition (or pan) the entire runbook canvas. This is helpful when working on
large runbooks and you need to reposition the canvas to view a specific area of the runbook.

When Select mode is enabled, the cursor changes to a pointer . When you click and hold the
mouse button in select mode you can drag a selection box around a group of runbook elements to
select them all. You can then move all the selected elements together as a distinct group.

When Select mode is enabled, you can select one or more runbook canvas elements and click the Cut
or Copy button in the main toolbar to copy the elements to the clipboard. You can then click the
Paste button to paste the elements in any runbook that is currently open. However, when cutting or

USER GUIDE 14

Kelverion Runbook Studio

copying activities and links from one runbook to another you may have to resolve any runbook
resources, such as runbook input parameters, which are not available in the destination runbook.

It is important to note that when you paste runbook activities into a new runbook, some parameters
values, such as those that use Activity Output or Runbook Input data sources, may no longer be
appropriate and as a result will be reset. For example, if one of the activities that is being copied has
a parameter that is assigned and Activity Output data source that references an activity that is not
being copied then the value assigned to that parameter will be reset.

USER GUIDE 15

Kelverion Runbook Studio

Explorer Panel
The Explorer panel provides access to resources and tools for building and managing your runbooks
and for managing assets in Azure Automation.

• The Toolbox group provides cmdlets and runbook control activities that you can use in your
runbooks.

• The Azure group provides automation assets that you can use in your runbooks as well tools
for managing the assets in your Azure Automation accounts.

• The Repository group provides tools for working with the current Git repository.

• The Changes group provides tools for managing the changes to your current Git repository.

The Toolbox Group
When Runbook Studio launches, it automatically identifies the PowerShell modules that are available
on your computer and lists them and the cmdlets they contain in the Toolbox tab of the Resources
panel.

If the Toolbox tab does not display a cmdlet that you would like to add to your runbook, you should
ensure that the location of the module that contains the cmdlet is specified in the PSModulePath
environment variable.

To quickly find a cmdlet, or set of similarly named cmdlets, type a keyword in the search box at the
top of the On-Premises tab. For example, to find all cmdlets in the Azure module type the keyword
Azure in the search box. To clear the search and display all available cmdlets, click the X button to
the right of the search box.

To add a command activity to your runbook, you can drag and drop the cmdlet from the Resources
panel onto the runbook canvas or right click the activity and click Add to Runbook.

The Azure Group
When you connect to Microsoft Azure, Runbook Studio automatically identifies the available
Automation Accounts and organizes them by Subscription in the Azure tab of the Resources panel.

Runbook Studio lets you work with the following types of global assets.

• Certificates

• Credentials

• Connections

• Runbooks

• Schedules

• Variables

• Webhooks

Tip: To use an asset in your runbook, you can simply drag and drop it onto the runbook canvas.

USER GUIDE 16

Kelverion Runbook Studio

You can also use the Azure tab to manage the global assets and runbooks in your Automation
Accounts. This is particularly helpful when you need to add or edit an asset that is required by the
runbook that you are currently building.

Right click on an asset to view the editing options that are available.

You can also open your Azure runbooks in Runbook Studio or download them to your computer.
When you open a runbook from Azure, Runbook Studio opens an on-premises copy of the runbook.
If you update an Azure runbook that you opened in Runbook Studio you need to explicitly publish
the runbook to make the changes available in Azure.

Online and Offline Mode
Runbook Studio supports working with Azure in both Online and Offline modes. When you connect
Runbook Studio to Azure (online mode), a secure snapshot of the assets in your automation accounts
is created and periodically updated. This means that the changes that you, or someone else, make in
the Azure web portal will automatically become available as you work in Runbook Studio.

When Runbook Studio is disconnected from Azure (offline mode), you can still access the resources
in your automation accounts using the snapshot that Runbook Studio generated the last time that
you were in online mode. Any changes that you make, including adding, editing, or removing
automation assets, will be stored on-premises, and then uploaded to Azure the next time you are in
online mode.

The following table outlines the icons that Runbook Status uses to notify users as to the
synchronization status of an automation asset.

Indicates that the on-premises and cloud versions of the automation asset are the same
based on the last synchronization event.

Indicates that the on-premises version of the automation asset as new or has changed
and that it will be uploaded to the cloud during the next synchronization event.

Indicates that the automation asset was changed both in the cloud and on-premises. It
is up to you to resolve the conflict manually by downloading the cloud version or
uploading the on-premises version by editing the asset.

Indicates that that there was an error synchronizing the automation asset. Right click on
the asset to get more information.

Disabling Azure Subscriptions and Automation Accounts
When you connect to Azure, Runbook Studio will automatically download information about the
Azure Subscriptions and Automation Accounts that are associated with your credentials. However,
you may find that some of these subscriptions and automation accounts are not applicable to the
work that you want to do in Runbook Studio, in which case you may find it helpful to disable them.
Disabled subscriptions and automation accounts are not kept synchronized and their assets are not
available when building runbooks.

USER GUIDE 17

Kelverion Runbook Studio

To disable an Azure Subscription or Automation Account, right click on the application item in the
Azure Resources Panel and select disable. To enable a disabled subscription or automation account,
right click on the item and select enable. When you re-enable a subscription or automation account,
all the changes that have occurred while you were disconnected will be automatically synchronized.

Update/Delete Conflicts
Most of the time Runbook Studio will be able to synchronize your on-premises changes to
automation assets with changes made by yourself or other users in Azure. However, there will be
times, especially when working in offline-mode for an extended time, that Runbook Studio will not
be able to automatically synchronize your on-premises changes because of changes made in Azure.

The most common synchronization conflict occurs when changes are made to an automation asset in
both Runbook Studio and in Azure within the time that the last synchronization event occurred.
Other sources of conflict occur when an asset is deleted in Runbook Studio and updated in Azure or
vice-versa.

When Runbook Studio detects a synchronization conflict it will flag the asset with a red exclamation
icon and provide a tooltip with details of the conflict. To resolve the conflict simply right click on the
asset and select one of the available options. For example, to resolve conflicting changes to an
automation asset you may decide to edit the changes made in Runbook Studio and override the
changes that were made in the cloud. Alternatively, you decided to download the asset from the
cloud and override the changes that were made in Runbook Studio.

Runbook Assets
Runbook assets are managed a little differently in Runbook Studio than other automation assets.
When you select a runbook asset in the Azure Resources panel, the properties of the runbook are
displayed in the Properties panel along with options for managing the automation assets that are
associated with the runbook, such as job schedules and webhooks.

To schedule a runbook job, simply select the Job Schedules group, click Add Schedule, and enter the
appropriate details in the dialog that is provided. Similarly, to create a webhook, simply select the
Webhooks group, click Add Webhook and enter the appropriate details in the dialog that is
provided.

You do not need to be connected to Azure to view the published or draft version of a runbook asset.
Runbook Studio stores a snapshot of the versions that were available the last time you were signed
into Azure.

View the published or draft version of a runbook:

1. In the Resource panel, click the Azure tab.

2. Find the desired runbook in the resources tree either by expanding the tree or using the
search field.

3. Right click the runbook.

4. Click Open and then click Published or Draft to view the desired version.

USER GUIDE 18

Kelverion Runbook Studio

5. An on-premises copy of the runbook will be displayed on the runbook canvas.

Note: A draft version of a runbook is only available if the runbook state is New or In Edit. Similarly, a
published version of a runbook is only available if the runbook state is In Edit or Published.

Webhooks
A webhook allows you to start a particular runbook in Azure Automation using a single HTTP request.
This allows external services, such as GitHub, Azure Log Analytics, or custom applications to start
runbooks without implementing a full solution using the Azure Automation API.

Add a Webhook.
1. In the Home tab, click Sign In. Sign into Azure.

2. In the Resources panel, select the Azure tab.

3. In the resources tree, select the desired runbook.

4. In the Runbook panel, select the Webhooks tab.

5. Click Add Webhook.

6. In the Name field, enter a unique name for the webhook.

7. In the Expiration field, select an expiration date and time.

8. In the Run on field, select where the to run the runbook (could be Azure or hybrid worker)

9. Click the Copy symbol and paste the webhook URL somewhere safe.

10. If the runbook has one or more input parameters, select the Parameters tab, and enter the
desired inputs.

11. Click OK.

Remove a Webhook.
1. In the Resources panel, select the Azure tab.

2. In the resources tree, select the desired runbook.

3. In the Runbook panel, select the Webhooks tab.

4. Find the webhook you want to delete and click the button.

5. Click Yes.

Schedules
To schedule a runbook in Azure Automation to start a specific time, you link it to one or more
schedules. A schedule can be configured to either run once or on a reoccurring hourly or daily
schedule. You can also schedule runbooks to run weekly, monthly, on specific days of the week or
days of the month, or a particular day of the month. A runbook can be linked to multiple schedules,
and a schedule can have multiple runbooks to it.

Create a new schedule.
1. In the Home tab, click New Asset and click Schedule.

USER GUIDE 19

Kelverion Runbook Studio

2. Type a Name and optionally a Description for the new schedule.

3. Specify the time that the schedule starts in the Starts field. Note that the start time is in
UTC.

4. Check Recurs every to create a reoccurring schedule. Leave Recurs every unchecked to
create a schedule that runs once.

5. For reoccurring schedules, enter an interval and select hour, day, week, or month.

6. For schedules the reoccur weekly, check the days on which the schedule will occur.

7. For schedules the reoccur monthly, select whether the schedule occurs on specified days of
the month of a specified day of the week. For the former, select the days of the month that
the schedule occurs and for the latter select the relative day of the week.

8. Optionally, you can create a schedule that expires by checking Expires and entering the
desired expiration date and time. Expiration date and time is in UTC.

9. Click OK.

Linking a schedule to a runbook
1. In the Resource panel, click the Azure tab.

2. In the resources tree, select the runbook that you want to schedule.

3. In the Runbook panel, click the Job Schedules tab.

4. Click Add Schedule.

5. Select the Schedule that you want the runbook to reoccur on.

6. Select whether the runbook should Run on Azure or a hybrid worker.

7. Enter values for any runbook input parameters. You must enter values for all required input
parameters.

8. Click OK.

Properties Panel
The Properties panel is where you configure your runbook, the activities in your runbook and the
links that connect them. The Properties panel is also where you assign a name to your runbook, and
if necessary, add input parameters to control the runbook when it runs.

The options that are available on the Properties panel depend on which element, if any, is currently
selected on the runbook canvas. For example, when you select a command activity on the canvas,
the Properties panel will display options for selecting a parameter set and for assigning parameter
values. When you select a link, the Properties panel will display options for configuring how the link
will behave.

When no runbook elements are selected, the Properties panel will provide you with options that you
can use to configure the runbook itself, such as its name, description, and input parameters.

USER GUIDE 20

Kelverion Runbook Studio

The properties panel is organized into tabs, with each tab containing a set of related options. To
access the options in a tab, simply click the appropriate tab at the bottom of the Properties panel.

Connecting to Microsoft Azure
Runbook Studio lets you build runbooks offline using the resources in your on-premises
environment, however at some point you will want to connect Runbook Studio to Azure to access
and manage the assets in your automation accounts and to publish your runbooks.

Before you can sign into Azure you must register one or more tenants and then select which tenant
you want to be active. Once this information is provided you can connect Runbook Studio to Azure
by clicking Sign In on the toolbar. When you have successfully signed into Azure you can select
the Azure tab on the library panel to access information about the automation accounts in your
Azure subscriptions.

Since Runbook Studio provides you with access to all your automation accounts, you need to specify
the Active Automation Account before you can publish a runbook. Also, when an active automation
account is specified, Runbook Studio can assist you when configuring activities that use global
certificate, credential, connection, and variable assets.

Setting the active automation account
1. In the Home tab, select a subscription.

2. And then select an automation account.

Note: When assigning data sources to the properties of an activity, the names of available
automation assets are retrieved from the active automation account.

USER GUIDE 21

Kelverion Runbook Studio

Working with Graphical Runbooks
The Kelverion Runbook Studio provides runbook authors with the tools to build graphical runbooks
using facilities that are available in your on-premises environment and then lets you publish your
runbooks to any of your Azure Automation Accounts.

All runbooks have the following properties.

Property Description

Name A unique name to identify the runbook. Runbook names can only contain
letters, numbers, underscores, and dashes. The name must begin with a
letter.

Runbook Type The type of runbook, either Graphical or Graphical PowerShell Workflow. The
former is based on Native PowerShell whereas the latter is based on
PowerShell Workflow.

Description An optional description of the runbook.

Input Parameters An optional set of parameters that can be used to invoke the runbook.

Output Types An optional set of output types that can be used to provide guidance when
invoking the runbook from another runbook.

You can access the properties for a runbook by clicking on an empty area on the runbook canvas.

Runbook Files
You can create or open as many runbooks as you require and quicly switch between them by clicking
the appropriate tab at the top of the runbook canvas. Kelverion Runbook Studio allows you to create
and manage both graphical and scripted runbooks, however it is specficially designed to helps users
author graphical runbooks.

Property Description

Graphical Based on Windows PowerShell and edited completely in Runbook
Studio or the Azure portal.

Graphical PowerShell
Workflow

Based on Windows PowerShell Workflow and edited completely in
Runbook Studio or the Azure portal.

PowerShell Text runbook based on Windows PowerShell script.

PowerShell Workflow Text runbook based on Windows PowerShell script.

Python Text runbook based on Python.

When you create a new graphical runbook, you have the option to create a Graphical runbook,
which is based on native PowerShell, or a Graphical PowerShell Worflow runbook, which is based on

USER GUIDE 22

Kelverion Runbook Studio

PowerShell Workflow. Each runbook type has advantages and disadvantages so you should carefully
consider what type you require as you will not be allowed to change it afterwards.

For example, if your runbook must support checkpoints and the ability to run activities in parallel,
then you should choose Graphical PowerShell Workflow. Alternatively, if your runbook will include
Code activities that will make use of PowerShell features not supported by PoweShell Workflow,
then you should choose Graphical.

Create a new runbook Document

1. In the Home tab, click New Runbook .

2. Click the runbook type that you want to create.

Open an existing runbook Document

1. In the Quick Access Toolbar, click Open , or press CTRL+O.

2. Select the file you want to open and click Open.

When building your runbooks, you can save your work at any time as a Kelverion Runbook File
(*.Runbook). To help ensure that you do not lose any unsaved work, Runbook Studio will prompt you
to save your work when you try to close a runbook that has been changed.

Save a runbook file on your device for the first time.
1. On the Quick Access Toolbar, click Save, or press CTRL+S.

2. Type a name for the runbook document and click Save.

Save an existing document as a new document (Save As)
1. Open the runbook document that you want to use as the basis for a new runbook.

2. Click File, and then click Save As.

3. Type a name for the document, and then click Save.

4. Edit the document the way that you want.

Important: Whether it is a runbook you created from scratch in Runbook Studio or a runbook that
you created online in Azure and then opened in Runbook Studio, you should be aware that you are
working on an on-premises copy of the runbook, which is not actively connected to any of your
runbooks in Azure.

For example, when you right click on a graphical runbook on the Azure library and click Open,
Runbook Studio downloads the runbook's data and creates a new on-premises copy. This copy is not
linked to the online version in any way other than that it initially shares the same name. After you
have opened an Azure runbook, you can save the runbook as a file on your computer, so that you
can edit it locally, or publish a draft to any of your automation accounts.

Important: As the Name property is used to uniquely identify a runbook in an Azure Automation
Account, care should be taken when publishing a runbook to an automation account that is different
from the one that you downloaded it from. If you are not careful, it is possible to overwrite an

USER GUIDE 23

Kelverion Runbook Studio

otherwise unrelated runbook that simply shares the same name as the runbook you are trying to
publish.

Runbook Studio will warn you when it detects a runbook with the same name as the runbook you
are trying to publish and then ask you whether you would like to continue before publishing the
runbook to Azure.

Runbook Input and Output
Your runbooks may require input to control their behavior. For example, if you are designing a
runbook that needs to start a virtual machine you may need to provide information, such as the
name of the virtual machine.

Add an input parameter to a runbook:
1. In the Runbook Properties panel, click Input and Output.

2. Click Add Input.

3. Type a Name and an optional Description.

4. Specify a Type and if the input is Mandatory.

5. Optionally, specify the input Has a default value and type an appropriate value.

6. Click OK.

To edit an input parameter, click the Edit button . To delete an input parameter, click the Delete

button .

As a runbook author, you can use Output Types to provide consumers of your runbooks with aid in
using them their own runbooks. When you add a child runbook and it has one or more output types
defined, the runbook asset data source parameter in any child activities will provide the ability to
browse the properties of the output types(s).

Add an output type to a runbook.
1. In the Runbook Properties panel, click Input and Output.

2. Click Add Output.

3. Specify the fully qualified name of the output type (ex. System.String, System.DateTime,
Microsoft.Azure.Commands.Automation.Model.AutomationAccount, etc.).

4. Click OK.

To edit anoutput type, click the Edit button . To delete an output type, click the Delete button .

Error Handling
Error handling is an important consideration when building runbooks. Enabling error handling
involves configuring your activities to convert terminating exception to errors and using error links to
connect your activities to error handling logic. Important: error handling is only supported by
Graphical Runbooks.

USER GUIDE 24

Kelverion Runbook Studio

To build error handling in your runbook, you must identify the activities in your runbook that can
generate exceptions. These could be terminating exceptions, such as a non-existent cmdlet, or non-
terminating exceptions, such as permission issues. Select each activity, and in the Properties pane,
enable the Convert exceptions to errors option. This option configures the activity to convert
terminating exceptions into non-terminating errors that you can manage.

Next, you need to connect the error generating activities to the error handling logic in your runbook
and you do this with error handling links. To create an error link , add a link from one of your
activities that converts exceptions to errors to your error handling activities in your runbook and in
the Properties, pane enable to Error link option.

Tip: Activities that convert exceptions to errors display a small triangle indicator in their top, right
corner and error links are displayed using a dotted line.

Logging and Tracing
The Logging and Tracing panel contains options that can be enabled to help you diagnose problems
with your runbooks. By default, logging and tracing should be disabled to improve performance.

Verbose Records
The Verbose message stream contains general information about the operation of a runbook. Since
the Debug stream is for interactive sessions and therefore not available to runbooks, you should use
the Verbose Stream to report diagnostic information. You can write verbose messages using the
Write-Verbose cmdlet.

To include verbose messages in the job history you must enable the Log verbose records option.
When this option is enabled, all verbose messages will be displayed when you test your runbook in
either Runbook Studio or the Azure portal.

Progress Records
When enabled, progress records are included in the job history before and after each activity in the
runbook runs. To include progress records in the job history, you must enable the Log progress
records option. Progress records are not stored when you run a published version of your runbook in
Azure and not when you test a draft runbook in Runbook Studio or the Azure portal.

Activity Level Tracing
For graphical runbooks, additional logging is available in the form of activity-level tracing. There are
two levels of tracing: Basic and Detailed. Tracing information is written to the Verbose stream, so
you must enable Verbose logging when you enable tracing.

When Basic Tracing is enabled, you can see the start and end times of each activity in the runbook as
well as information about retries, such as the number of attempts and the start time of each retry

USER GUIDE 25

Kelverion Runbook Studio

attempt. When Detailed Tracing is enabled, you get Basic tracing plus input and output data for each
activity.

Testing Runbooks
Runbook Studio lets you test the runbooks in your Azure Automation Accounts and view the output
that is being generated in real time.

Testing a runbook that is already uploaded to Azure:
1. In the Resources panel, click the Azure tab.

2. In the resources tree, find the runbook that you want to test.

3. Right click the runbook and click Test Draft.

4. Specify whether to Run on Azure or a hybrid worker.

5. Click Start.

6. If the runbook has one or more input parameters, type the desired inputs, and click OK. You
must provide values for all mandatory runbook inputs.

Tip: You can view the output from the most recent test job by clicking View last test.

You can suspend, resume, or stop a runbook test job by clicking the Suspend, Resume or Stop
button, respectively. Only Graphical and PowerShell runbooks can be paused.

You can also test a copy of the runbook that you are currently working on in the Runbook Studio
runbook canvas. This will upload a draft version of the runbook to the active automation account and
then start a new test job. To upload and test a runbook from the runbook canvas, do the following:

1. In the Home tab, click Sign In and follow the instructions to sign into Azure.

2. Set the active automation account to the account that you want to upload the runbook to.

3. Click Test .

Working with Activities
Activities are the building blocks that you will use to construct your runbooks. An activity can be to
call a PowerShell cmdlet, run a child runbook or execute PowerShell code.

All activities have the following properties:

Property Description

Label A unique label that identifies the activity in the runbook. Runbook Studio will
provide a default name for each activity, but you can provide your own labels to
make their role in the runbook more obvious.

Description An optional description of the activity. Providing a description is a fantastic way
to let everyone understand the function of the activity in the runbook.

USER GUIDE 26

Kelverion Runbook Studio

Checkpoint Indicates whether a checkpoint is set in the runbook workflow after the activity
runs. Checkpoints are only available for Graphical PowerShell Workflow
runbooks.
If the runbook uses Azure cmdlets, you should follow best practices and follow a
check-pointed activity with an Add-AzureRMAccount in case the runbook is
suspended and restarts from this checkpoint on a different worker.

Color Optionally, you can assign a color to the activity to signify context and meaning.

In addition, some activities will also have additional properties, such as:

• Discovery options (unique to Kelverion Smart Integration Modules)

• Parameter sets.

• Mandatory and/or optional parameters

• Retry options.

Once you have added an activity to your runbook you can drag the activity and place it anywhere on
the runbook canvas that makes sense to your runbook. Although the location of the activity on the
canvas does not affect its behavior, choosing a convenient location can help express its role and how
it is associated with other activities in the runbook.

When you select an activity in the runbook canvas, its properties will be displayed in the Properties
panel.

Disabling Runbook Activities
Runbook Studio provides runbook authors with the ability to selectively disable activities and their
incoming and outgoing links. Temporarily disabling activities in a runbook is something that runbook
authors may find useful when designing and testing their runbooks as it lets you investigate specific
paths through your runbooks while ignoring others.

When the graphical runbook is uploaded to Azure, all disabled activities and links will be excluded.
Only the enabled activities and links will be visible in the Azure version of the graphical runbook.

To disable an activity in a graphical runbook, right click on the activity and select disable. The activity
and all incoming and outgoing links will become greyed out to indicate that they are disabled. To
enable a disabled activity, right click on the activity and select enable.

Retry Behavior
Some activity types can be configured to run multiple times until a particular condition, which you
specify, is satisfied. You can use the retry behavior options to configure activities that should run
multiple times, which are error prone or may need more than one attempt for success.

When you enable retry for an activity, you can configure the runbook to wait a specified number of
minutes or seconds before running the activity again. If no delay is specified the runbook will run the
activity again, immediately after it is completed.

USER GUIDE 27

Kelverion Runbook Studio

The retry condition lets you specify a PowerShell expression that the runbook will evaluate after
each time the activity runs. If the result of the expression is true the activity does not run again, and
the runbook moves on to the next child activity in the runbook.

When defining the retry conditions for your activity, you can take advantage of a global variable
called $RetryData. Specific information about the last time the activity ran can be accessed using the
following properties.

Property Description

NumberOfAttempts Number of times that the activity has ran.

Output Output that was generated by the activity the last time that it ran.

TotalDuration Time elapsed since the activity was started.

StartedAt Time in UTC when the activity was first started.

The following are some examples of activity retry conditions.

Run the activity exactly five times
$RetryData.NumberOfAttempts -eq 5

Run the activity until it produces some output
$RetryData.Output.Count -ge 1

Run the activity until at least 2 minutes has elapsed
$RetryData.TotalDuration.TotalMinutes -ge 2

Runbook Studio also provides a Condition Editor that you can use to build retry exit conditions
graphically, without having to manually write PowerShell. Also, graphical exit conditions are
automatically updated whenever you change an activity label or runbook input name.

USER GUIDE 28

Kelverion Runbook Studio

Click Add Condition to add a new exit condition and click AND or OR to specify how a group of
conditions are logically connected. When AND is selected, all the connected conditions must
evaluate to true to exit the retry loop. When OR is selected, only one of the connected conditions
must evaluate to true to exit the retry loop. For complex exit conditions, click Add Group to add a
nested condition group. The graphical condition will be automatically concerted to PowerShell code
when the runbook is uploaded to Azure Automation.

Additional Parameters
Some activities also provide you with the ability to specify additional PowerShell parameters that you
can use to control the behavior of the activity.

For example, to output detailed information about the operation performed by an activity, you
would specify -Verbose:$True.

Working with Activity Links
Links are used in a runbook to determine the sequence in which the activities in your runbook are
executed, and to facilitate the flow of data from one activity to the next.

You can create a link between two activities by hovering the cursor on the bottom of the source
activity until it changes to the link cursor and then dragging and dropping the new link to a
destination activity.

When adding a link from a command activity, Runbook Studio will check to see if the activity declares
an output type. If an output type is declared, Runbook Studio will add a Pipeline link. Otherwise, it
will add a Sequence link.

When you select a link on the runbook, Link Properties will be displayed on the Properties panel. All
links have the following properties.

Property Description

Type When Pipeline is selected the destination-activity is run once for each output
object that is generated by the source object.

When Sequence is selected the destination-activity runs only once and it
receives an array of objects containing all the output objects that were
generated by the source activity.

Label An optional label that will be displayed next to the link on the runbook canvas.

Description An optional description to help describe the link. Providing a link with a
description is especially helpful when the link is conditional.

Color An optional color that can be used to imply meaning to the link.

Style An optional style that controls how the link appears.

USER GUIDE 29

Kelverion Runbook Studio

A graphical runbook will start all activities that do not have an incoming link and run them in parallel.
An activity can be the source activity for more than one destination activity, in which case each
outgoing link from the source activity will be processed in parallel.

The Databus
Any data that is output by an activity with an outgoing link is written to the runbook's databus. A
destination activity can use the databus to access the output from any previous activity in the
runbook.

How the data is written to the databus depends on the type of the outgoing link. If the link is a
pipeline, the output data is added to the data bus as multiple, individual objects. If the link is a
sequence, the output data is added to the databus as a single array of objects.

When a destination activity is connected to a source activity through a pipeline link, you can use the
Activity output data source to assign output from the activity to a specific parameter. When you
select the Activity output data source, Runbook Studio will provide you with a list of source activities
whose data can be accessed. You can also specify an optional Path to access a specified property of
the output object.

Data from the databus can also be used in PowerShell script code, such as the code used to define a
link condition, the code used in a PowerShell expression data source, or the code used to configure a
Code activity. When writing script code, the $ActivityOutput global variable can be used to access
the output from a previous activity.

The $ActivityOutput variable is a hashtable, and you use the label assigned to an activity to access its
data. If the output from the activity is an object, you can also access a specific property. For example:

$ActivityOutput['Activity Label']
$ActivityOutput['Activity Label'].PropertyName

Link Conditions
When you specify a condition on a link, the destination activity runs only if the condition resolves to
True. For a pipeline link, you must specify a condition for a single object. The runbook evaluates the
condition for each object output by the source activity. It then runs the destination activity for each
object that satisfies the condition. For a sequence link, the runbook only evaluates the condition
once, since a single array containing all objects from the source activity is returned. Because of this,
the runbook cannot use a sequence link for filtering, like it can with a pipeline link. The sequence link
can simply determine whether the next activity is run.

To add condition to a link, select the Condition tab, enable the Apply condition option, and then
click Build in Editor to open the condition editor. In the editor, click Add Condition to add a new link
condition and click AND or OR to specify how a group of conditions will be logically connected. When
AND is selected all the connected conditions must evaluate to true for the condition to pass. When
OR is selected, only one of the connected conditions for the condition to pass. For complicated
conditions, clock Add Group to add a nested condition group.

USER GUIDE 30

Kelverion Runbook Studio

Alternatively, you can use the text editor to manually write the link condition using PowerShell code.
Just make sure that your expression evaluates to $true or $false.

Error Links
When an activity is configured to convert exceptions to errors, you can add outgoing error links to
support custom error handling in your runbook.

To make an error link, select the link and in the Link Properties panel set the Error Link option to
True. Error links will only be followed when the source activity generates an exception, and the
activity has been configured to convert exceptions to errors. Error links will not be followed if the
source activity emits standard output (i.e., no error records).

You can access details of the errors emitted from an activity using $ActivityError [‘<source
activity>’].ExceptionMessage.

Cycles
A cycle is created when a destination activity links back to its source activity or to another activity
that eventually links back to its source. Cycles are not supported in Azure Automation and Runbook
Studio will warn you when you attempt to publish a runbook in which cycles are detected.

Working with Global Assets
When authoring runbooks, you will often find yourself using the global assets that you have defined
in Azure Automation. Runbook Studio makes it easy to use the assets from any of your Azure
automation accounts in your runbooks.

USER GUIDE 31

Kelverion Runbook Studio

The simplest way to consume global assets in your runbooks is to use the appropriate data sources
when you configure the parameters of your activities. The following steps outline how to assign a
global connection asset to a connection parameter of a command activity.

1. In the Home tab, specify the active automation account.

2. Add the desired activity to the runbook canvas.

3. Select the activity. Click Parameter Sets and select the desired parameter set.

4. Click Parameters select the desired connection parameters.

5. Select the Connection asset data source and select the desired connection asset from the
collection of connection assets that are associated with the active automation account.

Alternatively, you can use the Get-AutomationConnection activity to retrieve a connection asset for
use in your runbooks.

1. Add a Get-AutomationConnection activity to your runbook.

2. Select the Get-AutomationConnection activity and then click Parameters.

3. Click the Name parameter and select the Constant data source.

4. Type the name of the connection asset you want to retrieve.

5. Add an activity that requires a connection asset as a parameter.

6. Connect the Get-AutomationConnection activity to a child activity.

7. Select the child activity.

8. Click Parameter Sets and then click the desired parameter set.

If you have connected Runbook Studio to Azure, you can also just drag and drop the desired resource
from the Azure Library onto your runbook. If you want to set the value of a global variable, right click
the variable on the Azure Library and click Add set variable to canvas.

Publishing Runbooks to Azure
The runbooks you build in Runbook Studio are stored as files on your computer and are not
connected to the runbooks in your Azure Automation Accounts. To make your runbooks available to
Azure, you must publish a draft copy to an Azure Automation Account.

You can publish drafts of your runbooks to as many automation accounts as you like, but care should
be taken to ensure that the cmdlets and assets used by the runbook are available in the automation
account that you are publishing too.

The first step in publishing your runbooks is to set up the Active Automation Account, and there are a
couple of ways that you can do this. The first is to select the desired Subscription and Account in the
main toolbar and the second is to right click on an automation account in the Azure Library and click
Set as active account.

USER GUIDE 32

Kelverion Runbook Studio

Once you have set an active automation account, click the Upload button in the toolbar. If
Runbook Studio detects any problems that may prevent the runbook from running in Azure, it will
display an error report. You must fix all errors before the runbook can be published.

If the Azure Automation Account that you are publishing already contains a runbook with the same
name as the on-premises runbook that you are publishing, Runbook Studio will ask you to confirm
that you want to overwrite the runbook in Azure. Care should be taken to ensure that you are
publishing your runbooks to the correct automation account and that you are not accidentally
overwriting a runbook with the same name in another account.

When a graphical runbook is uploaded from Runbook Studio to Azure Automation, the runbook is
converted to a format that is compatible with Azure. This conversion means that the version of the
graphical runbook that you view in Runbook Studio can be quite different than the version that you
view in Azure Automation. For example, discoverable smart activities are translated to command
activities and color formatting is lost altogether.

Starting with Runbook Studio 3.1, runbook features that are unique to Runbook Studio will be
preserved when you upload and download graphical runbooks to and from Azure Automation. The
Runbook Studio runbook is still converted to a format that is compatible with Azure Automation;
however, the unique Runbook Studio features are persisted and restored when the runbook is
downloaded and opened in Runbook Studio.

Graphical runbooks that are created in Runbook Studio and uploaded to Azure Automation should
not be edited using the Azure Automation Portal. Any changes that you make to a graphical
runbook in the Azure Automation Portal will be lost when the graphical runbook is downloaded
and opened in Runbook Studio.

Activity Types
Runbook Studio supports several diverse types of activities, and each one has a specific role in the
runbooks that you will build.

The activity types supported by Runbook Studio include:

Activity Type Description

Command Activity Invoke a specific PowerShell cmdlet using parameters that you specify.

Invoke Runbook
Activity

Invoke another runbook in your automation account, optionally using
parameters that you specify.

Junction Activity A control activity that waits until all incoming branches have
completed.

Smart Activity A special type of command activity that lets you interactively discover
the resources in your enterprise environment. Smart activities are
unique to Kelverion Smart Integration Modules and Runbook Studio.

USER GUIDE 33

Kelverion Runbook Studio

Code Activity Accepts Native PowerShell or PowerShell Workflow code to provide
complex functionality that would otherwise not be available.

Command Activity
Command Activities are used when you want to invoke a PowerShell
cmdlet in your runbook. Cmdlet activities appear as a rectangle on the
runbook canvas.

Runbook Studio automatically provides you with access to the
cmdlets that are available on your computer.

The cmdlets that are available in Runbook Studio will differ from the cmdlets that have been
imported to a particular Azure Automation Account. Consequently, before publishing a runbook to
Azure, you should verify that the automation account that you are targeting contains the required
modules and cmdlets.

Parameter Sets
Windows PowerShell uses parameter sets to enable a single cmdlet to perform different actions for
different scenarios. Each parameter set exposes different mandatory and optional parameters.

All cmdlets have at least one parameter set, and most cmdlets have multiple. By default, Runbook
Studio will automatically select the default parameter set, if one is specified or the first parameter
set if one is not.

To view the parameter sets for a cmdlet activity, select the activity on the canvas and then select the
Parameter Sets tab on the Properties panel.

If the cmdlet is available on your computer, Runbook Studio will display the syntax of the parameter
set to help you select which one you require.

The current parameter set determines which parameters you can access. You can change the current
parameter set by selecting it in the list, however any parameters that you have already configured
will be lost.

Parameters
When you specify a value for a parameter you must select a data source. Depending on the type of
data source that is selected you may be provided with additional options. For example, if you select
the Activity Output data source you must also select the activity whose output will be assigned to the
parameter and optionally the path to a specific property of the output.

You must configure all mandatory parameters. To view the optional parameters that are associated
with an activity, click Optional at the top of the Parameters tab.

Several factors determine the data sources that are available to a parameter, and these include the
parameter's data type, whether it is linked to another activity and whether the runbook has any
input parameters.

USER GUIDE 34

Kelverion Runbook Studio

Runbook studio supports the following data sources.

Data Source Description

Activity output Specify activity whose output will be assigned to the parameter. You may
also provide an optional Path to select a specific property of the output
objects that are generated by the activity.

Available when the activity is linked to a source activity.

Not configured Clears any value that was previously configured. You must configure all
mandatory parameters.

Certificate asset Specify the name of the global certificate asset that will be used to provide
a value for the parameter.
If you have connected to Azure and selected a Subscription and
Automation Account on the toolbar, the data source will provide the
names of the certificates that are available.

Credential asset Specify the name of the global credential asset that will be used to provide
a value for the parameter.
If you have connected to Azure and selected a Subscription and
Automation Account on the toolbar, the data source will provide the
names of the credentials that are available.

Constant Specify a constant value to assign to the parameter.
Available for parameters that have the following data types:

• String
• DateTime
• Boolean
• Char
• Byte
• SByte

• Int16
• Int32
• Int64
• UInt16
• UInt32

• Uint64
• Decimal
• Double
• Float
• SwitchParameter

When assigning a constant DateTime value, Runbook Studio assumes the
value is in UTC.

Connection asset Specify the name of the global connection asset that will be used to
provide a value for the parameter.
If you have connected to Azure and selected a Subscription and
Automation Account on the toolbar, the data source will provide the
names of the connections that are available.

Empty string An empty string will be assigned to the parameter. Available when the
parameter is type System.String

Null A null ($null) value will be assigned to the parameter. Available when the
parameter type is a reference type.

PowerShell expression Specify a simple PowerShell expression whose output will be assigned to
the parameter.

USER GUIDE 35

Kelverion Runbook Studio

Invoke Runbook Activity
The Invoke Runbook activity is used to invoke another child
runbook. If the runbook that you want to invoke has parameters,
you can access them by selecting Parameters on the Properties
panel.

Using the Invoke Runbook activity to invoke child runbooks is an important runbook authoring tool
as it allows you to share commonly used runbook logic, such as error handling, across multiple
runbooks.

Code Activity
The Code activity is a special type of activity that can be used in a runbook to
run PowerShell or PowerShell Workflow code, depending on the runbook
type. This control provides functionality that might not be available by other
means.

Code activities cannot accept parameters, but they can use variables to access activity output and
runbook input parameters. Any output from a code activity is added to the databus. If a Code activity
does not have any outgoing links, its output is added to the runbook’s output.

You can view and modify the PowerShell code that will be executed by the activity by selecting the
Code activity on the canvas and then selecting the Code tab on the Properties panel.

Junction Activity
A Junction is a special activity that will wait until all incoming branches are completed.
This allows a runbook to run multiple activities in parallel and then ensure that they have
all been completed before continuing.

Junction activities can have more than one incoming link, however only one incoming link can be a
pipeline. The number of incoming sequence links is not constrained.

You can use variables in the expression to access the output of an activity
or a runbook parameter.

Runbook input Specify the name of the runbook input parameter whose value will be
assigned to the parameter.
Available when the runbook has one or more input parameters.

Variable asset Specify the name of the global variable asset that will be used to provide a
value for the parameter.
If you have connected to Azure and selected a Subscription and
Automation Account on the toolbar, the data source will provide the
names of the variables that are available.

USER GUIDE 36

Kelverion Runbook Studio

Smart Activity
Smart Activities are a special type of command activity
developed by Kelverion and only available in Runbook Studio.
Smart activities support interactive discovery as well as dynamic
parameters, filters, and outputs. Smart activities are identified
by the light bulb icon in the top right corner of the activity.

For example, the Insert-SqlRow activity in the Kelverion Integration Module for Microsoft SQL Server,
can connect to a selected database in your environment and automatically provide you with the
names of the tables that you can modify. When you select a target table, Runbook Studio will
dynamically generate parameters based on the columns that are in the table that you selected.

When you publish a runbook to Azure, smart activities are converted to Code activities that contain
PowerShell code that maps the dynamically generated parameters and filters onto the static
parameters of the cmdlet that will be invoked by the activity.

Connecting Smart Activities to Your Environment
Smart connections are a unique feature of Runbook Studio and are used to configure Smart Activities
so that they can connect to your IT environment and facilitate resource discovery.

Adding a Smart Activity
1. On the ribbon, select Home. Click Smart Connections, or press CTRL+SHIFT+C.

2. Click New.

3. Type a unique Name and optional Description.

4. Select a Connection Type.

5. Type appropriate values the provided connection fields. You must type values for all
mandatory fields.

6. Click OK.

Important: Smart activity connections are not global connection assets, although they may share
similar configuration properties. Smart activity connections are used by Runbook Studio to facilitate
discovery. If any of the smart activities in your runbook require a connection to your systems when
run in Azure, you must create the appropriate global connection assets in Azure and then configure
the activities to use them.

When you save a runbook that contains one or more smart activities, the runbook file that is
generated will also contain connection information. This will let you open the runbook file on
another instance of Runbook Studio where the connection information has not yet been defined.
However, since the runbook file is not secure, sensitive connection information, such as passwords,
will be excluded and will have to be re-entered before you can use the runbook.

Alternatively, you can export smart connection information so that it is available to other instances
of Runbook Studio. Smart connection export files are encrypted with a password that you specify

USER GUIDE 37

Kelverion Runbook Studio

and as a result may contain sensitive connection information, such as passwords. When you import a
smart connection export file into Runbook Studio, all connection information will be restored exactly
as it was originally entered.

Exporting Smart Connections
1. On the toolbar click Smart Connections. The Smart Connections dialog is displayed.

2. Click Export All. The Export Smart Connections dialog is displayed.

3. Click the File Path Browse button (...) and enter the file name you want to create.

4. In the Password box, type a password to encrypt the file.

5. In the Confirm Password box, enter the password again.

6. Click OK.

Importing Smart Connections
1. On the toolbar click Smart Connections. The Smart Connections dialog is displayed.

2. Click Import. The Import Smart Connections dialog is displayed.

3. Click the File Path Browse button (...) and select the file you want to import.

4. In the Password box, type the password that was used to export the file.

5. Optionally, select Overwrite existing connections to override the connection if it already
exists.

6. Click OK. The imported smart connections should be displayed in the list.

Smart Discovery
When you add a Smart Activity to a runbook, Runbook Studio replaces the standard cmdlet activity
Parameter Sets tab, with a special Discovery tab.

At the top of the Discovery tab is a Connection box that lets you select the connection that will be
used to connect to the system whose resources you want to discover. For example, this could be a
connection to a Microsoft SQL Server Database, a BMC Remedy ARS server or a ServiceNow instance.

After you select a connection, the smart activity will provide you with additional discovery options.

When you have provided values for all discovery options, Runbook Studio will dynamically populate
the Properties and optional Filters tabs with options that you can use to configure the activity.

Adding a Smart filter to a Smart activity:
1. In the runbook canvas, select the desired smart activity.

2. If not already done so, click the Discovery tab and configure the activity.

3. Click the Filters tab.

4. Click Add Filter.

5. Select a Filter and Operation.

USER GUIDE 38

Kelverion Runbook Studio

6. Select a Date source and configure it accordingly.

7. Click OK.

Note: The Filters tab will only be visible if the selected smart activity supports filter conditions.

Smart Parameters
Smart activities dynamically generate parameters by integrating with external systems using the
discovery options that you provided, and these parameters can be accessed by selecting the
Parameters tab.

For information on configuring parameters refer to the Parameters section of the Cmdlet Activity.

Smart Filters
To help you build runbooks that retrieve complex data from external systems, some smart
integration modules will provide activities that let you define filters.

If a smart activity supports filters, the Activity Properties will include a Filters tab. To add a filter,
select the Filters tab and click Add Filter.

To make changes to a smart filter, double click on on the filter to expand its properties. Any changes
that you make will be automatically saved.

To remove a filter, select the filter and click the Remove button.

When applying multiple filters to the output generated by an activity, only objects that satisfy every
filter condition will be included.

Smart Output
Data that is generated by an activity with an outgoing link is written to the data bus and any
destination activity can assign data from the data bus to its parameters using the Activity output
data source. In many instances, you will want to select a specific property of an output object, and
this can be difficult if the object contains many properties and/or is a PSObject with dynamically
generated properties.

Smart activities make using the data bus easier, because they provide Runbook Studio with the set of
output properties that can be accessed based on the discovery options that you entered.

When you use the Activity output data source to assign an output from a smart activity to a
parameter, click the down arrow in the Field path box to see the list of properties that are available.

Generating PowerShell
Kelverion Runbook Studio is primarily focused on helping users build graphical runbooks for Azure
Automation. Furthermore, the advanced discovery features provided by the activities in Kelverion’s
catalog of smart integration modules are designed to work with Runbook Studio and as a result they
can be difficult to configure when building runbooks in native PowerShell or PowerShell Workflow.

USER GUIDE 39

Kelverion Runbook Studio

To help users of Service Management Automation use Kelverion’s integration modules in their
runbooks, Runbook Studio provides the ability to generate PowerShell code snippets from any
activity in your graphical runbook. This is particularly helpful with Kelverion’s Smart activities
because Runbook Studio will automatically manage translating the dynamically generated
parameters and/or filters in your activity into the correct PowerShell code needed to invoke the
cmdlet.

To generate PowerShell code for an activity, simply right click the activity and select View
PowerShell Code. Runbook Studio will generate the code required to invoke the activity and then
display it in a dialog for you to review.

To use the PowerShell code in Service Management
Automation or a PowerShell editor such as
PowerShell ISE, just click Copy and paste the text
into the body of your script.

USER GUIDE 40

Kelverion Runbook Studio

Working with Version Control
Version control management is a system for recording changes to a file or collections of files over
time so that you can recall specific versions later. Runbook Studio now includes version control to
help you manage your runbook projects. Runbook Studio version control system is based on the
extremely popular Git framework.

Git is a distributed version control system, where clients do not just check out the latest snapshot of
files from a remote server; rather, they fully mirror the repository, including its full history. When
your team collaborates on a project using Git, everyone has a clone of the repository, and each clone
is a full backup of the data. This means that most of the time when you are working with Git you are
working on your own local collection of files, but it also means that your data is incredibly disaster
proof.

Runbook Studio enables you to do many of the things you can do with Git, including initializing and
cloning repositories, creating, and checking out branches, committing changes and pushing and
fetching changes to remote repositories. The following sections provide an in-depth guide to working
with Git in Runbook Studio so that you can take advantage of version control in all your runbook
projects.

For more information on version control and Git refer to Getting Started – What is Git? in the online
version of the Pro Git book.

Getting Started with Version Control
Before you can start working with Git in Runbook Studio there is some basic setup you need to do,
such as creating a user profile and authenticating Runbook Studio so that it can connect to remote
Git hosting providers, such as Azure DevOps and GitHub.

Profiles
Runbook Studio uses profiles to manage user information. You can create multiple profiles to
manage different projects and work environments. You must create at least one profile before you
can commit changes to a Git repository.

Create a new profile:

1. On the ribbon, go to the File tab.

2. On the File menu select Version Control.

3. On the Version Control menu, select Profiles.

4. Click New Profile.

5. In the Profile Name box, enter a unique name for the profile.

6. In the Name box, enter your name.

7. In the Email box, enter your email address.

https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

USER GUIDE 41

Kelverion Runbook Studio

8. Click OK.

Connecting to Git Hosting Services
Runbook Studio allows you to connect to several hosted and self-managed Git hosting providers,
including Azure DevOps, GitHub, GitHub Enterprise, GitLab, GitLab Self-Managed and Bitbucket.

Connecting to Azure DevOps
Runbook studio uses Personal Access Tokens to authenticate access to Azure DevOps.

Create a personal access token in Azure DevOps:

1. Sign into your organization in Azure DevOps (https://dev.azure.com/{yourorganization}).

2. From your home page, open your user settings, and select Personal access tokens.

3. Under Security, select Personal access tokens, and then select + New Token.

4. Name your token, select the organization where you want to use the token and then choose
a lifespan for your token.

5. Select the scopes for this token. Select Custom defined and scroll down to Code. Enable
Read & write.

6. Click Save.

7. Click to copy the token to your clipboard. For security reasons, after you navigate off
the page, you will not be able to see the token again.

Authenticate Runbook Studio:

1. On the ribbon, go to the File tab.

2. On the File menu, select Version Control.

3. On the Version Control menu, select Remote Hosts.

4. On the Remote Hosts panel, select Azure DevOps.

5. Enter your organization’s Host Domain and your Personal access token.

6. Click Connect.

Connecting to GitHub or GitHub Enterprise
Runbook Studio uses Personal Access Tokens to authenticate access to GitHub.

Create a personal access token in GitHub:

1. Sign-in to GitHub.

2. From your home page, open your user settings and select Settings.

3. On the Personal settings menu, select Developer settings.

4. On the Developer settings menu, select Personal access tokens.

USER GUIDE 42

Kelverion Runbook Studio

5. Click Generate new token.

6. In the Note box, name your token.

7. Select the scopes for this token. You must select repo.

8. Click Generate token.

9. Click to copy the token to your clipboard. For security reasons, after you navigate off the
page, you will not be able to see the token again.

Authenticate Runbook Studio:

1. On the ribbon, go to the File tab.

2. On the File menu, select Version Control.

3. On the Version Control menu, select Remote Hosts.

4. On the Remote Hosts panel, select GitHub or GitHub Enterprise.

5. Enter your Personal access token.

6. If authenticating GitHub Enterprise, enter the Host Domain.

7. Click Connect.

Connecting to GitLab and GitLab Self-Managed
Runbook studio uses Personal Access Tokens to authenticate with GitLab.

Create a personal access token in GitLab:

1. Sign-in to GitLab.

2. Click on our profile in the toolbar and select Settings.

3. In the left menu, click Access Tokens.

4. In the Name box, enter a descriptive name for your token.

5. In the Expires at box, enter the date that the token expires.

6. Select the API scope.

7. Click Create personal access token.

Authenticate Runbook Studio:

1. On the ribbon, go to the File tab.

2. On the File menu, select Version Control.

3. On the Version Control menu, select Remote Hosts.

4. On the Remote Hosts panel, select GitLab or GitLab Self-Managed.

USER GUIDE 43

Kelverion Runbook Studio

5. Enter your Personal access token.

6. If authenticating GitLab Self-Managed, enter the Host Domain.

7. Click Connect.

Connecting to Atlassian Bitbucket
Runbook studio uses Bitbucket credentials to authenticate with Bitbucket.

Authenticate Runbook Studio:

1. On the ribbon, go to the File tab.

2. On the File menu, select Version Control.

3. On the Version Control menu, select Remote Hosts.

4. On the Remote Hosts panel, select Bitbucket.

5. Enter your Bitbucket Username and Password.

6. Click Connect.

Working with Repositories
A Git repository is a file location that acts as a virtual storage of your project. A repository allows you
to save versions of your runbooks, which you can access when needed. With Runbook Studio you can
initialize new Git repositories, open existing repositories, and clone existing repositories from remote
hosts, such as Azure DevOps and GitHub.

For a detailed explanation of Git repositories see Git Basics – Getting a Git Repository in the online
version of the Pro Git book.

Initializing a Repository
With Runbook Studio you can initialize new Git repositories to convert an existing, un-versioned
collection of runbook files or to initialize a new empty repository. Most other Git features are not
available outside of an initialized repository, so this is usually your first step.

Initialize a new Git repository:

1. On the ribbon, select Version Control.

2. Click Init.

3. Select the Profile you want to use to initialize the repository.

4. In the Name box, enter the name of the new repository.

5. In the Initialize In box, enter the repository location. Alternatively, click Browse to open the
Browse for Folder dialog.

https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes

USER GUIDE 44

Kelverion Runbook Studio

6. Optionally, have Runbook Studio initialize the repository with a .gitignore file and/or a
Readme file. Git ignore files define the files that you do not want to track in your Git
repository.

7. Click Initialize.

Open a local Git repository:

1. On the ribbon, select Version Control.

2. Click Local and select Open a repository.

3. Select the folder containing the Git repository you want to open.

4. Click OK.

Cloning a Repository
If you want to collaborate on a project that has been set up in a central repository, you can use the
Git clone operation to get your own working copy. With Runbook Studio, you can clone Git
repositories using a URL or by selecting from a list of your organization’s repositories stored in Azure
DevOps or GitHub.

When you clone a repository, the latest version of the remote repository files on the master branch
will be pulled down and added to a new folder on your computer. This folder will contain the full
history of the remote repository and a newly created master branch.

Clone a Git Repository using a URI:

1. On the ribbon, select Version Control.

2. Click Clone and select Clone with URL.

3. In the Location box, enter the parent folder that will contain the repository. Alternatively,
click Browse to open the Browse for Folder dialog.

4. In the URI box, enter the URL of the repository you want to clone.

5. Click Clone.

Clone a Git repository from git hosting provider:

1. On the ribbon, select Version Control.

2. Click Clone and select a cloud or on-premises hosting provider.

3. In the Location box, enter the parent folder that will contain the repository. Alternatively,
click Browse to open the Browse for Folder dialog.

4. If cloning from GitHub Enterprise, select the desired Organization.

5. In the Repository box, select the repository you want to clone.

6. Click Clone.

USER GUIDE 45

Kelverion Runbook Studio

Recording Changes to a Git Repository
Now that you know how to initialize and clone Git repositories you are ready to start making changes
and committing snapshots of those changes to your Git repositories. Typically, you will commit your
work whenever the collection of runbooks in your project reaches a state that you want to record
and share with others.

Some Git Basics
The files in your Git repositories have three main states: modified, staged, and committed. Modified
means that you have modified the file but have not committed it yet. Staged means that you have
marked a modified file, in its current version, as ready to be included in the next commit snapshot.
Committed means that a snapshot of your file is safely stored in your Git repository.

Each Git project has three main sections: the working tree, the staging area, and the Git directory.
The working tree is a checkout of one version of your project. These files are pulled out of the
compressed database in the Git directory and placed on disk for you to use or modify. The staging
area stores information about what will go into your next commit. The Git directory is where Git
stores the metadata and object database for your project.

The basic Git workflow goes something like this:

1. You modify files in your working tree.

2. You selectively stage the changes that you want to include in your next commit.

3. You do a commit, which takes the files from the staging area and stores them as a
permanent snapshot in your Git directory.

4. Repeat.

Note that when you commit your work in Runbook Studio, the changes are stored in your local Git
repository. To share your work with others you must push it to a remote repository.

Committing Changes in Runbook Studio
Runbook Studio makes it easy to stage the runbook files that you have modified and commit them to
your Git repository. Let us say you have been working on multiple runbooks in your project and you
are ready to commit those changes to your Git repository.

1. On the Resources Panel, select Changes.

2. Select the changes that you want to include in the commit. Recent changes are selected by
default.

3. Click the Commit changes. The Commit dialog appears.

4. In the Profile box, select the profile that you want to commit with.

5. In the Summary box, enter a summary of the commit. The summary should be fifty
characters or less and no longer than seventy-two characters.

USER GUIDE 46

Kelverion Runbook Studio

6. Optionally, in the Description box, enter a description of the commit.

7. Click OK.

Undoing Things
Occasionally, you may neglect to include one or more changes in a commit. To amend a previous
commit. Note that you should only amend a commit that you have not pushed to a remote
repository.

1. On the Resources Panel, select Changes.

2. Select the changes that you want to make.

3. Select Amend.

4. Click Amend previous commit.

If you decide that you do not want to commit the changes that you have made to one or more of
your runbooks, you can discard them and return them to the version in your most recent commit.

Discarding changes to a runbook:

1. On the Resources Panel, select Changes.

2. Right click on the modified file you want to reset and select Discard changes.

Using the Git revert operation, you can go one step further and undo the changes in a previous
commit. When you revert to an existing commit, Git creates a new commit that reverses the changes
that were included in the commit. With Runbook Studio you can revert the last commit that you
made on a branch or go back farther using into the repository’s history and revert a specific commit.

Reverting the last commit on a branch:

1. On the Resources panel, select Repository.

2. If necessary, click to expand LOCAL.

3. Right click on the branch with the commit you want to undo and click Revert.

Reverting a commit in the Git history:

1. On the ribbon, select Version Control.

2. Click History .

3. On the left panel, right click on the commit you want to undo and select Revert.

Working with Remotes
Remote repositories are versions of your repositories that are hosted on the Internet or somewhere
on your network. Collaborating on a Git project requires managing remote repositories and pushing
and pulling data to and from them when you need to share work.

USER GUIDE 47

Kelverion Runbook Studio

For a detailed explanation of remotes, refer to Git Basics – Working with Remotes in the online
version of the Pro Git book.

Add a remote repository:

1. On the Resources panel, select Repository.

2. Right click on REMOTE and select Add remote.

3. In the Name box, enter the name of the remote.

4. In the URL box, enter the URL used to push to and pull from the remote.

5. Click OK.

Note that when you clone a remote repository, a remote repository with the name origin is
automatically created for you.

Fetching and Pulling Changes from a Remote
When you fetch data from a remote repository, Git downloads all the data from the remote that you
are currently missing, including all the branches from the remote.

Fetch changes from a remote repository:

1. On the Resources panel, select Repository.

2. If necessary, click to expand REMOTE.

3. Right click on the remote you want to fetch from and select Fetch.

It is important to note that fetching from a remote only downloads data to your local repository and
does not merge it with any of your work or modify on what you are currently working. To access the
data that was downloaded from the remote, you must manually merge it with your current work.

Merge changes from a remote repository:

4. On the Resources panel, select Repository.

5. If necessary, click to expand LOCAL.

6. Right click on the branch you want to merge with and select Checkout.

7. If necessary, click to expand REMOTE.

8. If necessary, click to expand the remote you want to merge from.

9. Right click on the remote branch you want to merge and select Merge.

If your current branch is set up to track a remote branch you have the option of performing a pull
operation which automatically fetches from the remote and merges the changes into your current
branch. Setting up your local branches to track a remote branch and then pulling from the remote is
the best strategy for collaborating with others.

Pulling changes from a remote repository:

https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes

USER GUIDE 48

Kelverion Runbook Studio

1. On the Resources panel, select Repository.

2. If necessary, click to expand LOCAL.

3. Right click on the branch you want to update and select Checkout.

4. Right click on the branch and select Pull from.

Alternatively,

1. On the ribbon, select Version Control.

2. Checkout the branch you want to merge with.

3. Click Pull

In Runbook Studio, you can easily set up a local tracking branch by checking out the remote branch
you want to work with – this will automatically create a local branch and configure it to track the
remote branch. Alternatively, you can manually assign the upstream branch of a local branch to
facilitate tracking.

Set upstream branch:

1. On the Resources panel, select Repository.

2. If necessary, click to expand LOCAL.

3. Right click on the branch you want to update and select Set upstream.

4. Select the Remote repository you want to collaborate with.

5. In the Branch name box, enter the name of branch you want to track.

6. Click OK.

Pushing Changes to a Remote
When you are at a point where you want to share your runbooks with others, you must push your
data upstream to a remote. Before you can push to a remote, you must be up to date with the
remote, so you might have to pull from the remote first.

Pushing changes to a remote:

1. On the Resources panel, select Repository.

2. If necessary, click to expand LOCAL.

3. Right click on the branch and select Push to.

Alternatively,

1. On the ribbon, select Version Control.

2. Checkout the branch you want to push.

3. Click Push .

USER GUIDE 49

Kelverion Runbook Studio

Working with Branches
A branch in Git is simply a lightweight, moveable pointer to a specific commit. Branches allow for
independent lines of development with each branch having its own working directory, staging area
and commit history.

For a detailed explanation refer to Git Branching – Branches in a Nutshell in the online version of the
Pro Git book.

Creating, Renaming and Deleting Branches
Having a dedicated branch for new work is the Git way of doing things and it makes it quite easy to
try new experiments without the fear of destroying existing functionality. Branches also make it
possible to work on several unrelated runbooks at the same time and to facilitate collaboration with
others.

Create a new branch:

1. On the Resources panel, select Repository.

2. If necessary, click to expand LOCAL.

3. Right click on the branch you want to branch from and click Create branch here.

4. In the Branch name box, enter the name of the branch.

5. Click OK.

Alternatively,

1. On the ribbon, select Version Control.

2. Checkout the branch you want to branch from.

3. Click Branch .

4. In the Branch name box, enter the name of the branch.

5. Optionally, in the Branch from box, select where you want to branch from.

6. Click OK.

Sometimes, you may find it necessary to rename an existing branch.

Rename a branch:

1. On the Resources panel, select Repository.

2. If necessary, click to expand LOCAL.

3. Right click on the branch you want to rename and select Rename.

4. In the New name box, enter the new name for the branch.

5. Click OK.

https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

USER GUIDE 50

Kelverion Runbook Studio

Once you have finished working on a branch and have merged it into the main code base, you are
free to delete it without losing any history. You may also want to delete a branch that contains a
failed experiment that you do not want to share. In any case, deleting branches that are no longer
required will make your Git repository easier to manage.

Delete a local branch:

1. In the Resources panel, select Repository.

2. If necessary, click to expand LOCAL.

3. Right click on the branch you want to delete and select Delete.

4. Click Yes.

You can also delete a local branch that you have pushed to a remote repository.

Delete a remote branch:

1. In the Resources panel, select Repository.

2. If necessary, click to expand REMOTE.

3. If necessary, click to expand remote that contains the branch you want to delete.

4. Right click on the branch you want to delete and select Delete.

5. Click Yes.

Checking out a Branch
In Git, the term checkout refers to the act of switching between different versions of your project.
Checking out a branch updates the files in your working directory to match the version stored in the
branch as well as letting Git know that it should record all new commits on that branch.

When you create a new branch, Runbook Studio automatically checks out the new branch so that it
becomes the current branch. You can also check out an existing branch at any time and make it the
current branch.

Checkout a local branch:

1. In the Resources panel, select Repository.

2. If necessary, click to expand LOCAL.

3. Right click on a branch and select Checkout.

Alternatively,

1. On the ribbon, select Version Control.

2. From the box, select the branch you want to check out.

When collaborating on a team, it is common to utilize shared remote repositories. Each remote
repository contains its own set of branches that can be downloaded locally by performing a fetch

USER GUIDE 51

Kelverion Runbook Studio

operation. When checking out a remote branch, Runbook Studio automatically creates a local
tracking branch that is setup to push and pull to and from the remote branch.

Checkout a remote branch:

1. In the Resources panel, select Repository.

2. If necessary, click to expand REMOTE.

3. If necessary, click to expand the desired remote.

4. Right click on the remote branch and select Checkout.

Merging
When you have finished working on the runbooks in a branch you need to merge the changes into
the main code branch. Merging is Git’s way of putting the forked history back together again.

For more information on merging see Git Branching – Basic Branch and Merging in the online version
of the Pro Git book.

Note that the merge operations in Runbook Studio involve merging changes into the current branch.
The current branch will be updated to reflect the merge, but the branch you are merging from will be
unchanged. Consequently, you will usually find yourself checking out branches, such as the master
branch, and then merging another branch with it.

Merge a local branch into the current branch:

1. In the Resources panel, select Repository.

2. If necessary, click to expand LOCAL.

3. If necessary, right click on the branch you want to merge into and select Checkout.

4. Right click on the branch you want to merge and select Merge.

Note that Runbook Studio will only let you merge a branch into the current branch if it includes
commits that are ahead of the current branch.

You can also merge a remote branch into the current branch, which you may need to do if you have
fetched changes from a remote Git repository. However, in most cases you will find yourself checking
out the remote branch, in which case Runbook Studio automatically creates a local tracking branch
for you.

Merge a remote branch into the current branch:

1. In the Resources panel, select Repository.

2. If necessary, click to expand REMOTE.

3. If necessary, click to expand the desired remote.

4. Right click on the remote branch and select Merge.

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

USER GUIDE 52

Kelverion Runbook Studio

Resolving Conflicts
When collaborating on runbook projects it will eventually happen that both you and your colleagues
have committed the overlapping changes that cannot be automatically resolved by Git. Runbook
Studio will notify you when conflicts are encountered, and it is up to you to manually resolve them.

Sometimes conflicts will require you to choose which version of the conflicted runbook, either yours
or theirs, you want to keep and other times you will need to manually modify one of the conflicted
runbooks to combine the changes made by yourself and others.

Resolve merge conflict by choosing your version of the runbook:

1. On the Resources panel, select Merge Conflicts.

2. In the Conflicted Files list, right click on the conflicted file and select Keep my version.

Resolve merge conflict by choosing their version runbook:

1. On the Resources panel, select Merge Conflicts.

2. In the Conflicted Files list, right click on the conflicted file and select Keep their version.

3. Note that the conflicted file is not listed in Staged Files.

You cannot open conflicted runbooks files in Runbook Studio using the standard File menu because
the conflicted file is no longer a valid runbook file – in fact, Runbook Studio will warn you if you try to
do this. Instead, Runbook Studio lets you view both versions of the conflicted runbook file so that
you determine how the runbooks differ.

Open your version of the runbook:

1. On the Resources panel, select Merge Conflicts.

2. In the Conflicted Files list, right click on the conflicted file and select Open mine.

Open their version of the runbook:

1. On the Resources panel, select Merge Conflicts.

2. In the Conflicted Files list, right click on the conflicted file and select Open theirs.

You can also update either your version or their version of the runbook and then save the modified
runbook. When you save the modified runbook, it becomes the current version of the runbook;
however, when you do this, you need to mark the conflict as resolved.

Manually resolve a conflict:

1. On the Resources panel, select Merge Conflicts.

2. In the Conflicted Files list, right click on the conflicted file and select Mark resolved.

When you have resolved all conflicted files, you must commit the merge to your Git repository.

Commit the merge:

USER GUIDE 53

Kelverion Runbook Studio

1. On the Resources panel, select Merge Conflicts.

2. In the Commit Message box, enter a short subject for the commit.

3. Click Commit merge.

You can also return your Git repository to the unconflicted state it was previously in by simply
aborting the merge.

Abort a merge:

1. On the Resources panel, select Merge Conflicts.

2. Click Abort merge.

Working with Tags
Tags are used by Git to highlight specific points in a repository’s history as being important. Typically,
you will use tags to mark release points in your runbook project (v1.0, v2.0, etc.).

For more information on tagging see Git Basics – Tagging in the online version of the Pro Git book.

Creating Tags
Runbook Studio lets you create two types of tags: lightweight tags and annotated tags. Lightweight
tags can be thought of as a branch that does not change – it is just a pointer to a specific commit.
Annotated tags are full objects in the Git database, and they include information about the user that
created the tag as well as a descriptive message.

Create a lightweight tag:

1. In the Resources panel, select Repository.

2. If necessary, click to expand LOCAL.

3. Right click on the branch you want to tag and click Create tag here.

4. In the Name box, enter the name of the tag.

5. Click OK.

Create an annotated tag:

1. In the Resources panel, select Repository.

2. If necessary, click to expand LOCAL.

3. Right click on the branch you want to tag and click Create annotated tag here.

4. In the Name box, enter the name of the tag.

5. In the Message box, enter a description of the tag.

6. Click OK.

https://git-scm.com/book/en/v2/Git-Basics-Tagging

USER GUIDE 54

Kelverion Runbook Studio

Sharing Tags
When you want to share a tag with others that you are collaborating with, Runbook Studio lets you
push it to your remote repositories. Typically, you will only push annotated tags to your remotes and
keep lightweight tags private.

Push a tag to a remote:

1. In the Resources panel, select Repository.

2. If necessary, click to expand TAGS.

3. Right click on the tag you want to share and select Push.

Deleting Tags
Runbook Studio lets delete tags that are no longer required, and you can choose to remove them
locally as well as from your remote repositories. Deleting tags that are no longer required makes
your local and remote repositories easier to manage.

Delete a tag locally:

1. In the Resources panel, select Repository.

2. If necessary, click to expand TAGS.

3. Right click on the tag you want delete and select Delete locally.

Delete a tag from a remote:

1. In the Resources panel, select Repository.

2. If necessary, click to expand TAGS.

3. Right click on the tag you want to delete and select Delete tag from remote.

4. Select the remote you want to delete from or select Delete from all remotes.

Working with Stashes
Stashing lets you store work that you are not yet ready to commit so that you can switch to another
branch. For example, let us say you are working on a new runbook, but you must fix a bug in another
runbook. Stashing takes the modified files in your working directory, including modified files, new
untracked files and staged changes and stores them so that you can apply them later.

Stashing Your Work
When you create a stash, the current state of your working directory is stored and returned to a
clean state. Note that you can only create a stash when you have changes to your current branch.

You are not limited to a single stash. You can stash several times to create multiple stashes as
required. You can think of the Git stash as a stack of unfinished changes, in which you push changes
onto the stack and then pop them off the stash when you are ready to work on them again.

Creating a stash:

USER GUIDE 55

Kelverion Runbook Studio

1. On the ribbon, select Version Control.

2. Click Stash .

3. Optionally, click Override default message and in the Message box, enter a brief description
of the stashed changes.

4. Click OK.

Applying Your Stashed Changes
When you are ready to restore your stashed changes, you have the option to pop or apply the stash.
When you pop a stash, the stored changes are applied to your working directory and the stash is
removed from the stash. When you apply a stash, the stored changes are applied to the working
directory, but the stash is not removed.

Popping the most recent stash:

1. On the ribbon, select Version Control.

2. Click Pop .

Runbook Studio also lets you selectively pop and restore stashes other than the most recent one as
well as drop stashes from the stack.

Selectively pop a stash:

1. In the Resources panel, select Repository.

2. If necessary, click to expand STASHES.

3. Right click on the stash you want to apply and click Pop Stash.

Selectively apply a stash:

1. In the Resources panel, select Repository.

2. If necessary, click to expand STASHES.

3. Right click on the stash you want to apply and click Apply Stash.

Selectively drop a stash:

1. In the Resources panel, select Repository.

2. If necessary, click to expand STASHES.

3. Right click on the stash you want to apply and click Drop Stash.

4. When prompted as to whether you want to drop the stash, click Yes.

USER GUIDE 56

Kelverion Runbook Studio

Let us Know How We are Doing?
If you encounter a problem while working with Runbook Studio or have an idea for making Runbook
Studio even better, we would like to hear from you.

1. Click the File tab and then click About.

2. Click Send Feedback.

 Alternatively, you can send us an e-mail at studiofeedback@kelverion.com

We look forward to hearing from you.

	Notices
	Installation and Setup
	System Requirements
	Installing Runbook Studio
	Runbook Studio License
	Starter License

	Connecting to Microsoft Azure Automation

	Introduction to Runbook Studio
	Runbook Canvas
	Activity Status
	Link Status
	Zoom Control
	Zoom into a runbook.
	Zoom out of a runbook.

	Drag and Drop Interaction Modes

	Explorer Panel
	The Toolbox Group
	The Azure Group
	Online and Offline Mode
	Disabling Azure Subscriptions and Automation Accounts
	Update/Delete Conflicts
	Runbook Assets
	Webhooks
	Add a Webhook.
	Remove a Webhook.

	Schedules
	Create a new schedule.
	Linking a schedule to a runbook

	Properties Panel
	Connecting to Microsoft Azure
	Setting the active automation account

	Working with Graphical Runbooks
	Runbook Files
	Create a new runbook Document
	Open an existing runbook Document
	Save a runbook file on your device for the first time.
	Save an existing document as a new document (Save As)

	Runbook Input and Output
	Add an input parameter to a runbook:
	Add an output type to a runbook.

	Error Handling
	Logging and Tracing
	Verbose Records
	Progress Records
	Activity Level Tracing

	Testing Runbooks
	Testing a runbook that is already uploaded to Azure:

	Working with Activities
	Disabling Runbook Activities
	Retry Behavior
	Additional Parameters

	Working with Activity Links
	The Databus
	Link Conditions
	Error Links
	Cycles

	Working with Global Assets
	Publishing Runbooks to Azure
	Activity Types
	Command Activity
	Parameter Sets
	Parameters

	Invoke Runbook Activity
	Code Activity
	Junction Activity
	Smart Activity
	Connecting Smart Activities to Your Environment
	Adding a Smart Activity
	Exporting Smart Connections
	Importing Smart Connections

	Smart Discovery
	Adding a Smart filter to a Smart activity:

	Smart Parameters
	Smart Filters
	Smart Output

	Generating PowerShell

	Working with Version Control
	Getting Started with Version Control
	Profiles
	Connecting to Git Hosting Services
	Connecting to Azure DevOps
	Connecting to GitHub or GitHub Enterprise
	Connecting to GitLab and GitLab Self-Managed
	Connecting to Atlassian Bitbucket

	Working with Repositories
	Initializing a Repository
	Cloning a Repository

	Recording Changes to a Git Repository
	Some Git Basics
	Committing Changes in Runbook Studio
	Undoing Things

	Working with Remotes
	Fetching and Pulling Changes from a Remote
	Pushing Changes to a Remote

	Working with Branches
	Creating, Renaming and Deleting Branches
	Checking out a Branch
	Merging
	Resolving Conflicts

	Working with Tags
	Creating Tags
	Sharing Tags
	Deleting Tags

	Working with Stashes
	Stashing Your Work
	Applying Your Stashed Changes

	Let us Know How We are Doing?

